WU Fei, HAI Ying, KONG Xiang-gui etc. Origin of Red Emission in NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup> Lanthanides Doped Upconversion Nanosystem[J]. Chinese Journal of Luminescence, 2015,36(6): 623-627
WU Fei, HAI Ying, KONG Xiang-gui etc. Origin of Red Emission in NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup> Lanthanides Doped Upconversion Nanosystem[J]. Chinese Journal of Luminescence, 2015,36(6): 623-627 DOI: 10.3788/fgxb20153606.0623.
Origin of Red Emission in NaYF4:Yb3+,Er3+ Lanthanides Doped Upconversion Nanosystem
In order to research the origin of red emission in NaYF
4
:Yb
3+
Er
3+
upconversion nanoparticles
the dependence of upconversion fluorescence intensity on the excitation power was studied in this paper. The bare core and core/shell NaYF
4
:Yb
3+
Er
3+
nanoparticles were synthesized
and their emission spectra were analyzed in detail. It is found that the cross-relaxation has great influence on the red emission in NaYF
4
:Yb
3+
Er
3+
upconversion nanoparticles. Different from bare core NaYF
4
:Yb
3+
Er
3+
nanoparticles
the cross-relaxation plays a leading role for the red emission in core/shell NaYF
4
:Yb
3+
Er
3+
nanoparticles
and the multi-photon relaxation can be almost ignored.
关键词
Keywords
references
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104(1):139-173.
Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38(4):976-989.
Downing E, Hesselink L, Ralston J, et al. A three-color, solid-state, three-dimensional display [J]. Science, 1996, 273(5279):1185-1189.
Cao T, Yang Y, Gao Y, et al. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging [J]. Biomaterials, 2011, 32(11):2959-2968.
Zhang F, Braun G B, Pallaoro A, et al. Mesoporous multifunctional upconversion luminescent and magnetic "nanorattle" materials for targeted chemotherapy [J]. Nano Lett., 2012, 12(1):61-67.
Van de Rijke F, Zijlmans H, Li S, et al. Up-converting phosphor reporters for nucleic acid microarrays [J]. Nat. Biotechnol., 2001, 19(3):273-276.
Xia L, Kong X, Liu X, et al. An upconversion nanoparticleZinc phthalocyanine based nanophotosensitizer for photodynamic therapy [J]. Biomaterials, 2014, 35(13): 4146-4156.
Idris N M, Gnanasammandhan M K, Zhang J, et al.In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers [J]. Nat. Med., 2012, 18(10):1580-1585.
Dolmans D E J G J, Fukumura D, Jain R K, et al. Photodynamic therapy for cancer [J]. Nat. Rev. Cancer., 2003, 3(5):380-387.
Castano A P, Mroz P, Hamblin, et al. Photodynamic therapy and anti-tumour immunity [J]. Nat. Rev. Cancer., 2006, 6(7):535-545.
Boyer J C, Van Veggel F C J M. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles [J]. Nanoscale, 2010, 2(8):1417-1419.
Wang F, Wang J, Liu X. Direct evidence of a surface quenching effect on size-dependentluminescence of upconversion nanop [J]. Angew. Chem. Int. Ed., 2010, 49(41):7456-7460.
Macedo A G, Ferreira R A S, Ananias D, et al. Effects of phonon confinement on anomalous thermalization, energy transfer, and upconversion in Ln3+-doped Gd2O3 nanotubes [J]. Adv. Funct. Mater., 2010, 20(4):624-634.
Vetrone F, Naccache R, Mahalingam V, et al. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles [J]. Adv. Funct. Mater., 2009, 19(18):2924-2929.
Wang Y, Liu K, Liu X M, et al. Critical shell thickness of core/shell upconversion luminescence nanoplatform for FRET application [J]. J. Phys. Chem. Lett., 2011, 2(17):2083-2088.
Mai H X, Zhang Y W, Sun L D, et al. Size-and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy [J]. J. Phys. Chem. C, 2007, 111(37):13730-13739.
Pollnau M, Gamelin D R, Luthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61(5):3337-3346.