浏览全部资源
扫码关注微信
1. 山东省激光偏光与信息技术重点实验室 曲阜师范大学物理系, 山东 曲阜,273165
2. 中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室 上海,200050
Received:09 February 2015,
Revised:03 April 2015,
Published:03 May 2015
移动端阅览
许海鑫, 王海龙, 严进一等. InAs/GaAs量子点激光器的增益和线宽展宽因子[J]. 发光学报, 2015,36(5): 567-571
XU Hai-xin, WANG Hai-long, YAN Jin-yi etc. Gain and Linewidth Enhancement Factor of InAs/GaAs Quantum-dot Laser Diodes[J]. Chinese Journal of Luminescence, 2015,36(5): 567-571
许海鑫, 王海龙, 严进一等. InAs/GaAs量子点激光器的增益和线宽展宽因子[J]. 发光学报, 2015,36(5): 567-571 DOI: 10.3788/fgxb20153605.0567.
XU Hai-xin, WANG Hai-long, YAN Jin-yi etc. Gain and Linewidth Enhancement Factor of InAs/GaAs Quantum-dot Laser Diodes[J]. Chinese Journal of Luminescence, 2015,36(5): 567-571 DOI: 10.3788/fgxb20153605.0567.
利用气源分子束外延技术生长InAs/GaAs量子点激光器材料
制作了由5层量子点组成的500 m腔长的激光器。首次使用增益拟合和波长加权的方法计算了激光器的线宽展宽因子。其中
增益拟合是对Hakki-Paoli方法计算增益的重要补充
对判断不同电流下的增益是否饱和具有重要作用。对最大模式增益求导数
当电流为50 mA时
差分增益最大值为1.33 cm
-1
/mA
然后迅速减小到0.34 cm
-1
/mA
此时电流为57 mA (0.99I
th
)。第一次使用加权波长来计算中心波长的移动
发现
慢慢减小直至接近于0。整个计算方法避免了在直接选取数据点时造成的误差
线宽展宽因子计算值为0.12~2.75。
A 500-m-long cavity laser diode with 5 layers of InAs quantum dot was fabricated. The laser materials were grown by gas-source molecular beam epitaxy. For the first time
the linewidth enhancement factor was acquired by gain fitting and weighted wavelength. Gain fitting is an important complement to Hakki-Paoli method
and plays an important role in evaluating whether the gain is saturation. The differential modal gain was evaluated by numerical differentiation of the maximum modal gain. The differential modal gain showed a maximum of 1.33 cm
-1
/mA at 50 mA
and dropped off to 0.34 cm
-1
/mA at 57 mA (0.99I
th
). The weighted average wavelength was treated as central wavelength in order to calculate the wavelength movement. It was found that
decreased slowly until closed to zero. The new method avoids the error due to selecting the data points
and the value of linewidth enhancement factor is from 0.12 to 2.75.
Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current [J]. Appl. Phys. Lett., 1982, 40(11):939-941.
Jia G Z, Yao J H, Shu Y C, et al. Optical properties and structure of InAs quantum dots in near-infrared band [J]. Chin. J. Lumin.(发光学报), 2007, 28(1):104-108 (in Chinese).
Li S W, Miao G Q, Jiang H, et al. Vertically stacked, self-assembled MBE-grown InAs quantum dots and application of field effect transistor [J]. Chin. J. Lumin.(发光学报), 2002, 23(6):554-558 (in Chinese).
Long R, Wang H L, Cheng R H, et al. Influence of external cavity feedback on the output characteristics of quantum-dot lasers [J]. Chin. J. Lumin.(发光学报), 2013, 34(4):474-479 (in Chinese).
Ledentsov N N. Long-wavelength quantum-dot lasers on GaAs Substrates:From media to device concepts [J]. IEEE J. Sel.Top. Quant. Electron., 2002, 8(5):1015-1024.
Bimberg D. Quantum dots for lasers, amplifiers and computing [J]. J. Phys. D:Appl. Phys., 2005, 38:2055-2058.
Zhukov A E, Maksimov M V, Kovsh A R, et al. Effect of an excited state optical transition on the linewidth enhancement factor of quantum dot lasers [J]. Semiconductors, 2012, 46(2):235-240.
Harder C, Vahala K, Yariv A. Measurement of the linewidth enhancement factor of semiconductor lasers [J]. Appl. Phys. Lett., 1983, 42(4):328-330.
Devaux F, Sorel Y, Kerdiles J F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter [J]. J. Lightwave Technol., 1993, 11(12):1937-1940.
Jeong J, Park Y K. Accurate determination of transient chirp parameter in high speed digital lightwave transmitters [J]. Electron. Lett., 1997, 33(7):605-606.
Schneider S, Borri P, Langbein W, et al. Linewidth enhancement factor in InGaAs quantum-dot amplifiers [J]. IEEE J. Quant. Electron., 2004, 40(10):1423-1429.
Jin R, Boggavarapu D, Khitrova G, et al. Linewidth broadening factor of a microcavity semiconductor laser [J]. Appl. Phys. Lett., 1992, 61(16):1883-1885.
Fathpour S, Mi Z, Bhattacharya P. High-speed quantum dot lasers [J]. J. Phys. D:Appl. Phys., 2005, 38:2103-2111.
Muszalski J, Houlihan J, Huyet G. Measurement of linewidth enhancement factor in self-assembled quantum dot semiconductor lasers emitting at 1 310 nm [J]. Electron. Lett., 2004, 40(7):428-429.
Hakki B W. Carrier and gain spatial profiles in GaAs stripe geometry lasers [J]. J. Appl. Phys., 1973, 44(11):5021-5028.
Hakki B W, Paoli T L. Gain spectra in GaAs double-heterostructure injection lasers [J]. J. Appl. Phys., 1975, 46(3):1299-1306.
Newell T C, Bossert D J, Stintz A, et al. Gain and linewidth enhancement factor in InAs quantum-dot laser diodes [J]. IEEE Photon. Technol. Lett., 1999, 11(12):1527-1529.
Schawlow A L, Townes C H. Infrared and optical masers [J]. Phys. Rev., 1958, 112(6):1940-1949.
Fleming M W, Mooradian A. Fundamental line broadening of single mode (GaAl)As diode lasers [J]. Appl. Phys. Lett., 1981, 38(7):511-513.
Henry C H. Theory of the linewidth of semiconductor lasers [J]. IEEE J. Quant. Electron., 1982, QE-18(2):259-264.
Zhukov A E, Kovsh A R, Ustinov V M, et al. Gain characteristics of quantum dot injection lasers [J]. Sci. Technol., 1999, 14(1):118-123.
0
Views
192
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution