浏览全部资源
扫码关注微信
1. 集成光电子学国家重点联合实验室 吉林大学电子科学与工程学院,吉林 长春,130012
2. 吉林大学 第一临床医院,吉林 长春,130021
3. 北京有色金属研究总院 北京,100088
Received:05 January 2015,
Revised:13 February 2015,
Published:03 May 2015
移动端阅览
李云飞, 陈洋, 毕宴钢等. 还原石墨烯氧化物-银纳米线柔性复合电极的制备与性能研究[J]. 发光学报, 2015,36(5): 545-551
LI Yun-fei, CHEN Yang, BI Yan-gang etc. Fabrication and Characterization of Reduced Graphene Oxide/Silver Nanowires Flexible Hybrid Electrodes[J]. Chinese Journal of Luminescence, 2015,36(5): 545-551
李云飞, 陈洋, 毕宴钢等. 还原石墨烯氧化物-银纳米线柔性复合电极的制备与性能研究[J]. 发光学报, 2015,36(5): 545-551 DOI: 10.3788/fgxb20153605.0545.
LI Yun-fei, CHEN Yang, BI Yan-gang etc. Fabrication and Characterization of Reduced Graphene Oxide/Silver Nanowires Flexible Hybrid Electrodes[J]. Chinese Journal of Luminescence, 2015,36(5): 545-551 DOI: 10.3788/fgxb20153605.0545.
制备了一种具有高导电性、高透过率以及良好的柔性和机械稳定性的还原石墨烯氧化物(RGO)-银纳米线(AgNW)复合电极。将低浓度的AgNW旋涂在制备的RGO薄膜上
使AgNW搭接在RGO的晶界、褶皱处
提高了RGO薄膜的载流子迁移能力。在保证透过率的前提下
提高复合薄膜的导电性能。结合薄膜转写工艺
制备了电阻为420 /□且透过率达62%的RGO-AgNW柔性复合电极。该复合电极具有良好的柔性以及机械稳定性
随着弯折次数的增加
电阻没有明显变化。
Flexible electrodes with high conductivity and transparence are still great challenges in the fabrication of stretchable optoelectronic devices. In this experiment
we demonstrated a flexible hybrid electrode based on reduced graphene oxide (RGO) and silver nanowires (AgNW). The RGO was prepared by thermal reduction and hydrazine reduction of graphene oxide to partially remove the oxygen-containing groups and to restore its electrical properties. We employed AgNW to restore the defects in RGO films
such as grain boundaries and wrinkles
to improve the conductivity of the electrodes. By optimizing the processing conditions
the flexible hybrid electrode exhibited excellent optical and electrical characteristics as well as mechanical flexibility. The optical transmittance and sheet resistance of the hybrid electrode were 62% at 550 nm and 420 /□. The RGO/AgNW hybrid electrode shows the potential for a wide range of flexible and stretchable optoelectronic device applications.
Feng J, Li F, Gao W B, et al. White light emission from exciplex using tris-(8-hydroxyquinoline) aluminum as chromaticity-tuning layer [J]. Appl. Phys. Lett., 2001, 78(25):3947-3949.
Liu Y F, Feng J, Yin D, et al. Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length [J]. Org. Electron., 2013, 14(6):1597-1601.
Liang J J, Li L, Tong K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes [J]. ACS Nano, 2014, 8(2):1590-1600.
Liu Y F, Feng J, Cui H F, et al. Fabrication and characterization of Ag film with sub-nanometer surface roughness as a flexible cathode for inverted top-emitting organic light-emitting devices [J]. Nanoscale, 2013, 5(22):10811-10815.
Bi Y G, Feng J, Li Y F, et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity [J]. Adv. Mater., 2013, 25(48):6969-6974.
Small C E, Chen S, Subbiah J, et al. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells [J]. Nat. Photon., 2012, 6(2):115-120.
Zhang X L, Song J F, Li X B, et al. Optical Tamm states enhanced broad-band absorption of organic solar cells [J]. Appl. Phys. Lett., 2012, 101(24):243901-1-3.
Jin Y, Feng J, Zhang X L, et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode [J]. Adv. Mater., 2012, 24(9):1187-1191.
Liu J Q, Yin Z Y, Cao X H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes [J]. ACS Nano, 2010, 4(7):3987-3992.
Jin Y, Feng J, Xu M, et al. Matching photocurrents of sub-cells in double-junction organic solar cells via coupling between surface plasmon polaritons and microcavity modes [J]. Adv. Opt. Mater., 2013, 1(11):809-813.
Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230):706-710.
Liu Y F, Feng J, Cui H F, et al. Highly flexible inverted organic solar cells with improved performance by using an ultrasmooth Ag cathode [J]. Appl. Phys. Lett., 2012, 101(13):133303-1-3.
Lee D, Lee H, Ahn Y, et al. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices [J]. Nanoscale, 2013, 5(17):7750-7755.
Chen X, Jia B H, Zhang Y N, et al. Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets [J]. Light:Sci. Appl., 2013, 2:e92.
Han T H, Lee Y B, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J]. Nat. PhotonPhoton., 2012, 6(2):105-110.
Bi Y G, Feng J, Li Y F, et al. Arbitrary shape designable microscale organic light-emitting devices by using femtosecond laser reduced graphene oxide as a patterned electrode [J]. ACS Photon., 2014, 1(8):690-695.
Sun M T, Zhang Z L, Wang P J, et al. Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires [J]. Light:Sci. Appl., 2013, 2:e112.
Kholmanov I N, Stoller M D, Edgeworth J, et al. Nanostructured hybrid transparent conductive films with antibacterial properties [J]. ACS Nano, 2012, 6(6):5157-5163.
Liu J Q, Lin Z Q, Liu T J, et al. Multilayer stacked low-temperature-reduced graphene oxide films:Preparation, characterization, and application in polymer memory devices [J]. Small, 2010, 6(14):1536-1542.
Kou L J, Li F S, Guo T L, et al. Preparation of blue light-emitting graphene quantum dots from carbon nanotube and application in nonvolatile polymer memory devices [J]. Chin. J. Lumin.(发光学报), 2014, 35(5):618-622 (in Chinese).
Papasimakis N, Thongrattanasiri S, Zheludev N I, et al. The magnetic response of graphene split-ring metamaterials [J]. Light:Sci. Appl., 2013, 2:e78.
Huang H Z, He Y Q, Li W Y, et al. Photoelectric conversion properties of graphene oxide film prepared by electrochemical deposition [J]. Chin. J. Lumin.(发光学报), 2014, 35(2):142-148 (in Chinese).
Apalkov V, Stockman M I. Proposed graphene nanospaser [J]. Light:Sci. Appl., 2014, 3:e191.
Huang X, Yin Z Y, Wu S X, et al. Graphene-based materials:Synthesis, characterization, properties, and applications [J]. Small, 2011, 7(14):1876-1902.
Wan X J, Long G K, Lu H, et al. GrapheneA promising material for organic photovoltaic cells [J]. Adv. Mater., 2011, 23(45):5342-5358.
Wu X X, Li F S, Wu W, et al. Flexible organic light emitting diodes based on double-layered graphene/PEDOT:PSS conductive film [J]. Chin. J. Lumin.(发光学报), 2014, 35(4):486-490 (in Chinese).
Zedan A F, Moussa S, Terner J, et al. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions [J]. ACS Nano, 2012, 7(1):627-636.
Wu Z S, Ren W C, Gao L B, et al. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Carbon, 2009, 47(2):493-499.
Zhang Y L, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction [J]. Nano Today, 2010, 5(1):15-20.
Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing [J]. Nano Today, 2010, 5(5):435-448.
Guo L, Jiang H B, Shao R Q, et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device [J]. Carbon, 2012, 50(4):1667-1673.
Kholmanov I N, Magnuson C W, Aliev A E, et al. Improved electrical conductivity of graphene films integrated with metal nanowires [J]. Nano Lett., 2012, 12(11):5679-5683.
Kholmanov I N, Domingues S H, Chou H, et al. Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes [J]. ACS Nano, 2013, 7(2):1811-1816.
Liu Y F, Feng J, Zhang Y F, et al. Improved efficiency of indium-tin-oxide-free flexible organic light-emitting devices [J]. Org. Electron., 2014, 15(2):478-483.
0
Views
121
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution