BAI Yu, GUO Xiao-yang, LIU Xing-yuan. Theoretical Study on The Improvement of Light Absorption Efficiency of Organic Solar Cells by Moth Eye Structures[J]. Chinese Journal of Luminescence, 2015,36(5): 539-544
BAI Yu, GUO Xiao-yang, LIU Xing-yuan. Theoretical Study on The Improvement of Light Absorption Efficiency of Organic Solar Cells by Moth Eye Structures[J]. Chinese Journal of Luminescence, 2015,36(5): 539-544 DOI: 10.3788/fgxb20153605.0539.
Theoretical Study on The Improvement of Light Absorption Efficiency of Organic Solar Cells by Moth Eye Structures
In order to improve the energy conversion efficiency of organic solar cells (OSCs)
the moth-eye structure was applied to OSCs. According to the theoretical simulation
in a certain active layer thickness
the moth-eye OSCs has a large enhancement in light absorption efficiency compared with the planar OSCs. Through the optimization of microstructure morphology
period and height
the moth-eye OSCs has an increase of 11.3% in light absorption efficiency than the planar OSCs. The simulation of the distribution of magnetic field intensity in the moth-eye OSCs indicates that the light absorption enhancement can be attributed to both the anti-reflective effect of moth-eye structures and the enhanced absorption effect of the surface plasmon polariton (SPP).
关键词
Keywords
references
Gledhill S E, Scott B, Gregg B A. Organic and nano-structured composite photovoltaics:An overview [J]. J. Mater. Res., 2005, 20(12):3167-3179.
Forrest S R. The limits to organic photovoltaic cell efficiency [J]. MRS Bull., 2005, 30(1):28-32.
Zhang F J, Xu X W, Tang W H, et al. Recent development of the inverted configuration organic solar cells [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(7):1785-1799.
Cai W Z, Gong X, Cao Y. Polymer solar cells:Recent development and possible routes for improvement in the performance [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(2):114-127.
Tian Q, Mao X H, Sun L Q. Optoelectronic technology and its advances [J]. J. App. Opt.(应用光学), 2002, 23(1):1-4 (in Chinese).
Liu Y H, Zhao J B, Li Z K, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells [J]. Nat. Commun., 2014, 5:5293-5299.
Shtein M, Peumans P, Benziger J B, et al. Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition [J]. J. Appl. Phys., 2003, 93(7):4005-4016.
Roman L S, Ingans O, Granlund T, et al. Trapping light in polymer photodiodes with soft embossed gratings [J]. Adv. Mater., 2000, 12(3):189-195.
Niggemann M, Glatthaar M, Gombert A, et al. Diffraction gratings and buried nano-electrodes-architectures for organic solar cells [J]. Thin Solid Films, 2004, 451-452:619-623.
Ko D H, Tumbleston J R, Zhang L, et al. Photonic crystal geometry for organic solar cells [J]. Nano Lett., 2009, 9(7):2742-2746.
Min C J, Li J F, Veronis G, et al. Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings [J]. Appl. Phys. Lett., 2010, 96(13):133302-1-3.
Williamson A, McClean , Leipold D, et al. The design of efficient surface-plasmon-enhanced ultra-thin polymer-based solar cells [J]. Appl. Phys. Lett., 2011, 99(9):093307-1-3.
Yoon W J, Jung K Y, Liu J W, et al. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(2):128-132.
Jin Y, Feng J, Zhang X L, et al. Surface-plasmon enhanced absorption in organic solar cells by employing a periodically corrugated metallic electrode [J]. Appl. Phys. Lett., 2012, 101(16):163303-1-3.
Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures [J]. Nat. Nanotechnol., 2007, 2(12):770-774.
Cai J Q, Ye J F, Chen S Y, et al. Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays [J]. Energy Environ. Sci., 2012, 5(6):7575-7581.
Ravipati S, Shieh J, Ko F H, et al. Broadband and wide angle antireflection of sub-20 nm GaAs nanograss [J]. Energy Environ. Sci., 2012, 5(6):7601-7605.
Raut H K, Dinachali S S, He A Y, et al. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties [J]. Energy Environ. Sci., 2013, 6(6):1929-1937.
Sainiemi L, Jokinen V, Shah A, et al. Non-reflecting silicon and polymer surfaces by plasma etching and replication [J]. Adv. Mater., 2011, 23(1):122-126.
Diedenhofen S L, Vecchi G, Algra R E, et al. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods [J]. Adv. Mater., 2009, 21(9):973-978.
Zhou L, Ou Q D, Chen J D, et al. Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures [J]. Sci. Rep., 2014, 4:4040-4047.
Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950):824-830.
Van Oosten D, Spasenovi ? M, Kuipers L. Nanohole chains for directional and localized surface plasmon excitation [J]. Nano Lett., 2010, 10(1):286-290.
Gao H W, Henzie J, Odom T W. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays [J]. Nano Lett., 2006, 6(9):2104-2108.
Liu W C, Tsai D P. Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance [J]. Phys. Rev. B, 2002, 65(15):155423-1-5.
Li J Z, Ning C Z. Induced transparency by intersubband plasmon coupling in a quantum well [J]. Phys. Rev. Lett., 2004, 93(8):087402-1-4.
Refinement of Polyethyleneimine-coated Zinc Oxide Electron Transport Material and Investigation of Its Enhancing Effect on Air and Ultraviolet Stability of Organic Photovoltaic Devices
Simulation Study on Influence of The Carrier Mobility on The Performances of Organic Solar Cells
Electron Transport Layers of Inverted Heterojunction Organic Solar Cells
Related Author
YAN Lingpeng
WEI Changting
YANG Yongzhen
WANG Hua
WANG Zhongqiang
ZHANG Xiaoke
YANG Jiansheng
WANG Yu
Related Institution
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology
College of Materials Science and Engineering, Taiyuan University of Technology
MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology
College of Science, Yanshan University, Qinhuangdao 066004, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences