ZHENG Li-hua, ZHANG Jian, XING Cong etc. Effect of Variation in Environmental Pressure of Solvent Annealing on The Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2015,36(4): 443-448
ZHENG Li-hua, ZHANG Jian, XING Cong etc. Effect of Variation in Environmental Pressure of Solvent Annealing on The Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2015,36(4): 443-448 DOI: 10.3788/fgxb20153604.0443.
Effect of Variation in Environmental Pressure of Solvent Annealing on The Performance of Polymer Solar Cells
Polymer solar cells based on blends of poly(3-hexylthiophene) (P3HT) and [6
6]-phenyl-C
61
-butyric acid methyl ester (PCBM) were fabricated by solvent annealing under different environmental pressures. The performance of the solar cells were tested by X-ray diffraction (XRD)
atomic force microscopy (AFM) images and absorption spectra. By increasing the environmental pressure of solvent annealing
the optical absorption of the active layer was enhanced
the crystallinity of the active layer and the phase segregation of P3HT and PCBM were improved
which facilitated photogenerated exciton dissociation and charge-carrier transport. The power conversion efficiency of the polymer solar cell fabricated by solvent annealing under 2.0 MPa is 3.69%
which is 29% higher than that of the one fabricated under atmosphere pressure.
关键词
Keywords
references
Dou L, You J, Hong Z, et al. A decade of organic/polymeric photovoltaic research [J]. Adv. Mater., 2013, 25(46):6642-6671.
You J, Dou L, Hong Z, et al. Recent trends in polymer tandem solar cells research [J]. Prog. Polym. Sci., 2013, 38(12):1909-1928.
Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly (3-hexylthiophene): [6, 6]-phenyl-C61-butyric acid methyl ester blendsRoute towards high efficiency polymer solar cells [J]. J. Mater. Chem., 2007, 17(30):3126-3140.
He Z C, Zhong C M, Su S J, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure [J]. Nat. Photon., 2012, 6(9):591-595.
Soci C, Hwang I W, Moses D, et al. Photoconductivity of a low-bandgap conjugated polymer [J]. Adv. Funct. Mater., 2007, 17(4):632-636.
Li G, Shrotriya V, Huang J, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater., 2005, 4(11):864-868.
Hu Z Y, Zhang J J, Zhu Y J. High-performance and air-processed polymer solar cells by room-temperature drying of the active layer [J]. Appl. Phys. Lett., 2013, 102(4):043307-1-4.
Wu J, Xie Z H. Polymer solar cells fabricated with doctor-blade coating technique [J]. Chin. J. Lumin.(发光学报), 2012, 33(5):540-544 (in Chinese).
Li J Q, Liu C X, Guo W B. Role of solution-processed V2O5 in organic solar cell [J]. Chin. J. Lumin.(发光学报), 2013, 34(9):1245-1249 (in Chinese).
Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622.
Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells [J]. Appl. Phys. Lett., 2006, 88(25): 253503-1-3.
Li G, Yao Y, Yang H, et al. Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes [J]. Adv. Funct. Mater., 2007, 17(10):1636-1644.
Chen F C, Ko C J, Wu J L, et al. Morphological study of P3HT:PCBM blend films prepared through solvent annealing for solar cell applications [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(12):2426-2430.
Mihailetchi V D, Xie H, de Boer B, et al. Origin of the enhanced performance in poly (3-hexylthiophene):[6, 6] -phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer [J]. Appl. Phys. Lett., 2006, 89(1):012107-1-3.
Sekine N, Chou C H, Kwan W L, et al. ZnO nano-ridge structure and its application in inverted polymer solar cell [J]. Org. Electron., 2009, 10(8):1473-1477.
Chen F C, Tseng H C, Ko C J. Solvent mixtures for improving device efficiency of polymer photovoltaic devices [J]. Appl. Phys. Lett., 2008, 92(10):103316-1-3.
Shaheen S E, Brabec C J, Sariciftci N S, et al. 2.5% efficient organic plastic solar cells [J]. Appl. Phys. Lett., 2001, 78(6):841-843.
Kim D H, Park Y D, Jang Y, et al. Solvent vapor-induced nanowire formation in poly(3-hexylthiophene) thin films [J]. Macromol. Rapid Commun., 2005, 26(10):834-839.
Kokubu R, Yang Y. Vertical phase separation of conjugated polymer and fullerene bulk heterojunction films induced by high pressure carbon dioxide treatment at ambient temperature [J]. Phys. Chem. Chem. Phys., 2012, 14(23):8313-8318.
Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method [J]. Adv. Mater., 2012, 24(18):2459-2462.
Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends [J]. Nat. Mater., 2008, 7(2):158-164.
Huang J H, Yang C Y, Hsu C Y, et al. Solvent-annealing-induced self-organization of poly(3-hexylthiophene), a high-performance electrochromic material [J]. ACS Appl. Mater. Interf., 2009, 1(12):2821-2828.
Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells [J]. Nat. Mater., 2006, 5(3):197-203.
Yang X, Loos J, Veenstra S C, et al. Nanoscale morphology of high-performance polymer solar cells [J]. Nano Lett., 2005, 5(4):579-583.