浏览全部资源
扫码关注微信
1. 深圳大学 机电与控制工程学院,广东 深圳,518060
2. 深圳大学 光电工程学院,广东 深圳,518060
Received:18 December 2014,
Revised:04 February 2015,
Published:03 April 2015
移动端阅览
李卫民, 郭金川, 周彬. 溶剂挥发时间对体异质结有机太阳能电池复合特性的影响[J]. 发光学报, 2015,36(4): 437-442
LI Wei-min, GUO Jin-chuan, ZHOU Bin. Solvent Evaporation Time Dependent Recombination Properties in Bulk Heterojunction Organic Solar Cells[J]. Chinese Journal of Luminescence, 2015,36(4): 437-442
李卫民, 郭金川, 周彬. 溶剂挥发时间对体异质结有机太阳能电池复合特性的影响[J]. 发光学报, 2015,36(4): 437-442 DOI: 10.3788/fgxb20153604.0437.
LI Wei-min, GUO Jin-chuan, ZHOU Bin. Solvent Evaporation Time Dependent Recombination Properties in Bulk Heterojunction Organic Solar Cells[J]. Chinese Journal of Luminescence, 2015,36(4): 437-442 DOI: 10.3788/fgxb20153604.0437.
制备了基于P3HT:PCBM复合体异质结有机太阳能电池
通过改变旋涂速度和时间来控制活性混合膜中溶剂的挥发时间
研究了载流子复合损耗与器件加工制造条件以及界面陷阱密度的关系。测试结果表明
活性复合膜溶剂的挥发时间对有机太阳能电池的光电性能有直接影响。溶剂挥发快的器件产生的陷阱辅助复合最为强烈
基于开路电压与光强对数关系的直线的斜率较大
存在的界面陷阱密度也最大。文中建立了制造加工条件、复合损耗机制、界面陷阱密度、器件光电特性之间的数值联系
这对最终提高聚合物太阳能电池性能具有重要的指导意义。
The bulk heterojunction organic solar cells based on compositional blend of P3HT and PCBM were fabricated
the relationships among the carrier recombination loss
device manufacturing conditions and interface trap density were studied by changing the spin velocity and spin coating time to control the solvent evaporation time in the mixed film. The results show that the evaporation time of active composite film directly influences the photoelectric performance of organic solar cell. The device that the solvent evaporates faster can produce stronger trap-assisted recombination
it's interface trap density is larger
and the slope of the open circuit voltage
versus
the logarithm of the light intensity is greater. A numerical relationship among the manufacturing processing conditions
recombination loss mechanism
interface trap density and the device optoelectronic characteristics has been established in this paper
which can offer good guidance to improve the performance of polymer solar cells.
Sebastien L, Steven V P, Ellen D S, et al. The future of organic photovoltaic solar cells as a direct power source for consumer electronics [J]. Solar Energy Mater. Solar Cells, 2012, 103(1):1-10.
Wang Y M, Wei W, Liu X, et al. Research progress on polymer heterojunction solar cells [J]. Solar Energy Mater. Solar Cells, 2012, 98(1):129-145.
Liang Y Y, Xu Z, Xia J B, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4% [J]. Adv. Energy Mater., 2010, 22(20):E135-E138.
Martin A G, Keith E, Yonshihiro H, et al. Solar cell efficiency tables [J]. Prog. Photovolt.: Res. Appl., 2012, 20(1):12-20.
Park S H, Roy A S, Moon J S, et al. Bulk heterojunction solar cells with inerrnal auantum efficiency approaching 100% [J]. Nat. Photon., 2009, 3(2):297-303.
Christoph J B. Organic photovoltatics:Technology and market [J]. Solar Energy Mater. Solar Cells, 2004, 83(1):273-292.
Street R A, Schoendorf M, Roy A, et al. Interface state recombination in organic solar cells [J]. Phys. Rev. B, 2010, 81(20):205307-1-11.
Sarah R C, Anshuman R, Alan J H. Recombination in polymer-fullerene bulk heterojunction solar cells [J]. Phys. Rev. B, 2010, 82(24):245207-1-10.
Hu Z Y, Zhang J J, Zhu Y J. High-performance and air-processed polymer solar cells by room-temperature dryinof the active layer [J]. Appl. Phys. Lett., 2013, 102(4):043307-1-4.
Kanwar S N, Hari K K, Baskar G, et al. Dependence of recombination mechanisms and strength on processing cnditions in polymer solar cells [J]. Appl. Phys. Lett., 2011, 99(26):263301-1-4.
Loren G K, Yanming S, Guillermo C B, et al. Fullerene concentration dependent bimolecular recombination in organic photovoltaic films [J]. Appl. Phys. Lett., 2013, 102(13):133302-1-3.
0
Views
121
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution