LANG Yan-bo, CHEN Huan, SONG Wei-ye etc. Synthesis of Hydrophobic Ligands Modified Core-shell NaYF<sub>4</sub>/NaLuF<sub>4</sub>:Yb<sup>3+</sup>,Tm<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2015,36(4): 382-388
LANG Yan-bo, CHEN Huan, SONG Wei-ye etc. Synthesis of Hydrophobic Ligands Modified Core-shell NaYF<sub>4</sub>/NaLuF<sub>4</sub>:Yb<sup>3+</sup>,Tm<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2015,36(4): 382-388 DOI: 10.3788/fgxb20153604.0382.
Synthesis of Hydrophobic Ligands Modified Core-shell NaYF4/NaLuF4:Yb3+,Tm3+ Nanoparticles
1%Tm upconversion nanoparticles under a mild solvothermal condition. The core-shell nanoparticles were characterized by X-ray diffraction
transmission electron microscopy
Fourier transform infrared spectrometer and fluorescence spectrometer.The measurement results showed that -NaYF
4
cores were about 10-15 nm
and average size of -NaYF
4
/-NaLuF
4
:20%Yb
1%Tm upconversion nanoparticles was about 20 nm. Both the core and core-shell nanoparticles possessed narrow size distributions. The core-shell nanoparticles showed stronger luminescence intensity than those of cubic NaLuF
4
:20%Yb
1%Tm with similar size. The detection results showed that this kind of hydrophobic core-shell -NaYF
4
/-NaLuF
4
:20%Yb
1%Tm nanoparticle has a higher potential value in biomedical applications.
关键词
Keywords
references
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids [J]. Chem. Rev., 2004, 104:139-173.
Qin W, Zhang D, Zhao D, et al. Near-infrared photocatalysis based on YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticles [J]. Chem. Commun., 2010, 46(13):2304-2306.
Macdougall S K W, Ivaturi A, Marques-Hueso J, et al. Broadband photoluminescent quantum yield optimisation of Er3+-doped -NaYF4 for upconversion in silicon solar cells [J]. Sol. Energy Mater. Sol. Cells, 2014, 128:18-26.
Zhao P C, Wang T J, Liu X Y, et al. Optical amplification at 1 525 nm in BaYF5:20%Yb3+,2%Er3+ nanocrystals doped SU-8 polymer waveguide [J]. J. Nanomater., 2014, 2014:1-6.
Shang S J, Yuan X M, Wang Y Q, et al. Application of ultrasonic dispersion in preparation of small particles (Y, Gd)BO3:Eu3+ powder [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2010, 25(2):186-191 (in Chinese).
Zhou J, Liu Z, Li F. Upconversion nanophosphers for small-animal imagining [J]. Chem. Soc. Rev., 2012, 41(3):1323-1349.
Chen H, Zhai X, Li D, et al. Water-soluble Yb3+, Tm3+ codoped NaYF4 nanoparticles: Synthesis, characteristics and bioimaging [J]. J. Alloys Compds., 2012, 511(1):70-73.
Zhang P, Manoj K, Matthew S. Versatile photosensitizers for photodynamic therapy at infrared excitation [J]. J. Am. Chem. Soc., 2007, 129:4526-4527.
Ma C H, Qiu J, Zhou D, et al. Influence of silver nanoparticles on Er3+ up-conversion in CaF2 precipitated oxyfluoride glass-ceramics [J]. Chin. Opt. Lett., 2014(8):64-67.
Zheng X P, Tian G, Gu Z. Applications of upconversion nanoparticles for cancer photodynamic therapy [J]. Chin. J. Clin. Oncol.(中华肿瘤杂志), 2014, 41(1):27-31 (in Chinese).
Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers [J]. Nat. Med., 2012, 18(10):1580-1585.
Zhao D, Seo S J, Bae B S. Full-color mesophase silicate thin film phosphors incorporated with rare earth ions and photosensitizers [J]. Adv. Mater., 2007, 19(21):3473-3479.
Dong H, Sun L D, Yan C H. Basic understanding of the lanthanide related upconversion emissions [J]. Nanoscale, 2013, 5(13):5703-5714.
Zhao D, Chen H, Zheng K, et al. Growth of hexagonal phase sodium rare earth tetrafluorides induced by heterogeneous cubic phase core [J]. RSC Advances, 2014, 4(26):13490-13494.