GAO Juan-juan, LI Xia, GAO Song etc. High Power Mid-infrared Supercontinuum Generation in Silica Photonic Crystal Fiber[J]. Chinese Journal of Luminescence, 2015,36(2): 225-230
GAO Juan-juan, LI Xia, GAO Song etc. High Power Mid-infrared Supercontinuum Generation in Silica Photonic Crystal Fiber[J]. Chinese Journal of Luminescence, 2015,36(2): 225-230 DOI: 10.3788/fgxb20153602.0225.
High Power Mid-infrared Supercontinuum Generation in Silica Photonic Crystal Fiber
采用色散适宜的石英光子晶体光纤可以产生20 dB带宽覆盖1 550~3 420 nm的超连续谱.超连续谱的平均功率可达56.6 W.
Abstract
Non-silica fibers have the intrinsic limitations in high power supercontinuum generation. High power mid-infrared supercontinuum generation in silica photonic crystal fiber is firstly investigated in our studies. The dispersion of fiber is designed to be beneficial to supercontinuum broadening to mid-infrared region. Meanwhile
to withstand high pumping power
a relatively large core diameter is essential. On the premise of supercontinuum broadening to 3.4 m
fiber length is optimized to reduce the loss of the optical fibers. The results show that it is feasible to generate supercontinuum spectrum with 20 dB-bandwidth covering from 1 550 nm to 3 420 nm by injecting 1.95 m picosecond pulse into silica photonic crystal fiber with appropriate dispersion. The average power of the supercontinuum spectrum can reach 56.6 W.
关键词
Keywords
references
Sanders S T. Wavelength-agile fiber laser using group-velocity dispersion of pulsedsuper-continua and application to broadband absorption spectroscopy [J]. Appl. Phys. B, 2002, 75(6-7):799-802.
Buchter K, Herrmann H, Langrock C, et al. All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared [J]. Opt. Lett., 2009, 34(4):470-472.
Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows [J]. Meas. Sci. Technol., 1998, 9(4):545-562.
Xia C N, Xu Z, Islam M N, et al. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 m with direct pulse pattern modulation [J]. IEEE J. Sel. Top. Quant. Electron., 2009, 15(2):422-434.
Qin G S, Yan X, Kito C, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 m in a fluoride fiber [J]. Appl. Phys. Lett., 2009, 95(16):161103-1-3.
Domachuk P, Wolchover N A, Cronin-Golomb M, et al. Over 4 000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs [J]. Opt. Express, 2008, 16(10):7161-7168.
Liao M S, Chaudhari C, Qin G S, et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation [J]. Opt. Express, 2009, 17(14):12174-12182.
El-Amraoui M, Fatome J, Jules J C, et al. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers [J]. Opt. Express, 2010, 18(5):4547-4556.
Yang W Q, Zhang B, Xue G S, et al. 13 W all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 m MOPA system [J]. Opt. Lett., 2014, 39(7):1849-1852.
Liu K, Liu J, Shi H X, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power [J]. Opt. Express, 2014, 22(20):24384-24391.
Razeghi M, Slivken S, Bai Y, et al. The quantum cascade laser: A versatile and powerful tool [J]. Opt. Photon. News, 2008, 19(7-8):42-47.
Anderson R, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: A free electron laser study [J]. Laser Surg. Med., 2006, 38(10):913-919.
Cumberland B A, Travers J C, Popov S V, et al. 29 W high power CW supercontinuum source [J]. Opt. Express, 2008, 16(8):5954-5962.
Chen K K, Alam S U, Price J H V, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power [J]. Opt. Express, 2010, 18(6):5426-5432.
Chen H W, Guo L, Jin A J, et al. Investigation of hundred-watt-level supercontinuum generation in photonic crystal fiber [J]. Acta. Phys. Sinica (物理学报), 2013, 62(15):154207-1-7 (in Chinese).
Xia C N, Kumar M, Cheng M Y, et al. Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses [J]. IEEE J. Sel. Top Quant. Electron., 2007, 13(3):789-797.
Guo C Y, Ruan S C, Chen Z C, et al. An all fiber supercontinuum source pumped with a 18.4 W picosecond fiber laser [J]. J. Shenzhen Univ.(深圳大学学报), 2011, 28(3):118-224 (in Chinese).
Chen K K, Alam S U, Price J H, et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power [J]. Opt. Express, 2010, 18(6):5426-5432.
Song R, Hou J, Chen S P, et al. Recent developments in high power near-infrared super-continuum generation based on photonic crystal fiber [J]. Chin. Phys. B, 2012, 21(9):94211-94215.
Yamamoto T, Kubota H, Kawanishi S, et al. Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber [J]. Opt. Express, 2003, 11(13):1537-1540.
Wang P, Liu J. Progress and prospect on ultrafast Tm-doped fiber lasers [J]. Chin. J. Laser (中国激光), 2013, 40(6):10-21 (in Chinese).
Humbach O, Fabian H, Grzesik U, et al. Analysis of OH absorption bands in synthetic silica [J]. J. Non-Cryst. Solids, 1996, 203:19-26.
Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber [J]. Rev. Mod. Phys., 2006, 78(4):1135-1140.
Travers J C, Rulkov A B, Cumberland B A, et al. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser [J]. Opt. Express, 2008, 16(19):14435-14447.
Agrawal G P. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics [M]. 3rd ed. Beijing: Publish House of Electronics Industry, 2002:22-35.
Svigny B, Vanvincq O, Valentin C, et al. Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths [J]. Opt. Express, 2013, 21(25):30859-30873.
Fang L, Zhao J L, Gan X T, et al. Generation and control of supercontinuum in photonic crystal fibers with two-zero dispersion wavelengths [J]. Acta Photon. Sinica (光子学报), 2010, 39(11):1921-1927 (in Chinese).
Hilligse K M, Andersen T, Paulsen H, et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths [J]. Opt. Express, 2004, 12(6):1045-1054.