浏览全部资源
扫码关注微信
1. 中北大学 材料科学与工程学院,山西 太原,030051
2. 清华大学 新型陶瓷与精细工艺国家重点实验室 北京,100084
Received:16 October 2014,
Revised:01 December 2014,
Published Online:19 December 2014,
Published:03 February 2015
移动端阅览
董英鸽, 杨金龙, 丁艳丽等. 反相微乳液法制备尺寸可调的高荧光碳量子点[J]. 发光学报, 2015,36(2): 157-162
DONG Ying-ge, YANG Jin-long, DING Yan-li etc. Size-controllable Synthesis of Highly Fluorescent Carbon Quantum Dots in A Reverse Microemusion[J]. Chinese Journal of Luminescence, 2015,36(2): 157-162
董英鸽, 杨金龙, 丁艳丽等. 反相微乳液法制备尺寸可调的高荧光碳量子点[J]. 发光学报, 2015,36(2): 157-162 DOI: 10.3788/fgxb20153602.0157.
DONG Ying-ge, YANG Jin-long, DING Yan-li etc. Size-controllable Synthesis of Highly Fluorescent Carbon Quantum Dots in A Reverse Microemusion[J]. Chinese Journal of Luminescence, 2015,36(2): 157-162 DOI: 10.3788/fgxb20153602.0157.
在反相微乳液体系中
以抗坏血酸作为碳源制备具有高强度荧光的碳量子点.实验中通过调整水和表面活性剂的量比实现对碳量子点尺寸大小的控制
利用十六烷基胺修饰碳量子点.当激发波长为360 nm时
碳量子点的量子产率最高为47%.当水和表面活性剂的量比从20增加到50时
碳量子点的尺寸也随之而增大.
Highly luminescent carbon quantum dots (CQDs) were prepared by using L-ascorbic acid as a carbon source derived from reverse microemulsion. This method could control the CQDs size directly by adjusting water-surfactant molar ratio without other procedure. Hexadecylamine was used to functionize CQDs. The synthesized CQDs had high quantum yield of maximum 47% at the 360 nm excitation wavelength and the particle size could be tuned by changing the molar ratio of the water to surfactant from 20 to 50.
Chen M J, Yang W T, Yin M Z. Size-controllable synthesis and functionalization of ultrafine polymeric nanoparticles [J]. Small, 2013, 9(16):2715-2719.
Da Silva J C G E, Goncalves H M R. Analytical and bioanalytical applications of carbon dots [J]. TRAC-Trends Anal. Chem., 2011, 30(8):1327-1336.
Li H T, Kang Z H, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications [J]. J. Mater. Chem., 2012, 22:24230-24253.
Shen J H, Zhu Y H, Yang X L, et al. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices [J]. Chem. Commun., 2012, 48:3686-3699.
Chen Q D, Shen X H, Gao H C. Formation of solid and hollow cuprous oxide nanocubes in water-in-oil micro-emulsions controlled by the yield of hydrated electrons [J]. J. Colloid Interf. Sci., 2007, 312:272-278.
Wang Y Y, Zhou Z H, Yang Z, et al. Gas sensors based on deposited single-walled carbon nanotube networksfor DMMP detection [J]. Nanotechnology, 2009, 20:1-8.
Wei M D, Konishi Y, Zhou H S, et al. Synthesize of single-crystal manganese dioxide nanowires by a soft chemical process [J]. Nanotechnology, 2005, 16:245-249.
Wang Y D, Zhou A N, Yang Z Y. Preparation of hollow TiO2 microspheres by the reverse microemulsions [J]. Mater. Lett., 2008, 62:1930-1932.
Kwon W S, Rhee S W. Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles [J]. Chem. Commun., 2012, 48:5256-5258.
Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microsphere [J]. Angew. Chem. Int. Ed., 2003, 42: 3027-3030.
Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J]. J. Mater. Chem., 2009, 19(4):484-488.
Liu H Z. Microemulsion Phase Solvent Extaction Technique and Applications [M]. Beijing: Science Press, 2005:226 (in Chinese).
Song F P, Zhu Q A, Wang S F, et al. Preparation of BaTiO3 spherical nanoparticles by reverse microemulsion [J]. Chin. J. Inorg. Chem.[HTK](无机化学学报), 2006, 22(2):355-358 (in Chinese).
Liu H P, Ye T, Mao C D. Fluorescent carbon nanoparticles derived soot [J]. Angew. Chem. Int. Ed., 2007, 46(34):6473-6475.
Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006, 128:7756-7757.
Cao L, Wang X, Meziani M, et al. Carbon dots for multiphoton bioimaging [J]. J. Am. Chem. Soc., 2007, 129: 11318-11319.
Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) [J]. J. Am. Chem. Soc., 2007, 129:744-745.
Zhao Q, Zhang Z, Huang B, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J]. Chem. Commun., 2008, 41:5116-5118.
Kwon W S, Do S A, Won D C, et al. Carbon quantum dot based field effect transistors and their ligand length dependent carrier mobility [J]. ACS Appl. Mater. Interf., 2013, 5:822-827.
Yan F Y, Zou Y, Wang M, et al. Synthesis and application of the fluorescent carbon dots [J]. Prog. Chem.(化学进展), 2014, 26(1):61-74 (in Chinese).
0
Views
74
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution