WANG Bi-ben, ZHU Man-kang, WANG Hao etc. Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2015,36(2): 141-146
WANG Bi-ben, ZHU Man-kang, WANG Hao etc. Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2015,36(2): 141-146 DOI: 10.3788/fgxb20153602.0141.
Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method
Carbon particles were synthesized in aqueous solution of the biological reagents D-(+)-glucosamine-HCl and glucose. The structure and composition of synthesized carbon particles were investigated using field emission scanning electron microscope
high-resolution transmission electron microscope
micro-Raman spectroscope and Fourier transform infrared spectroscope. The results indicate that the carbon particles are formed in the spherical shape and amorphous structure with diameter of 0.3-1.4 m. The photoluminescence (PL) of carbon particles were studied in micro-Raman spectroscopy using the 325 nm line of He-Cd laser. The PL spectra show a weak blue PL band centered at 420 nm and two strong and wide green and red PL bands centered at 575 and 650 nm
which are related to the functional groups and the transition between two bands. The broadening of green and red PL bands is related to the diversity of sp
2
clusters.
关键词
Keywords
references
Yang Z C, Li X, Wang J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process [J]. Carbon, 2011, 49(15):5207-5212.
Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices [J]. Chem. Commun., 2012, 48(8):1147-1149.
Kumar S, Mehdipour H, Ostrikov K. Plasma-enabled graded nanotube biosensing arrays on a Si nanodevice platform: Catalyst-free integration and in situ detection of nucleation events [J]. Adv. Mater., 2013, 25(1):69-74.
Levchenko I, Volotskova O, Shashurin A, et al. The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes [J]. Carbon, 2010, 48(15):4570-4574.
Cheng Q, Xu S, Long J, et al. Low-temperature PECVD of nanodevice-grade nc-3C-SiC [J]. Chem. Vap. Deposit., 2007, 13(10):561-566.
Sha Y, Lou J, Bai S, et al. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (Ⅱ) ions [J]. Mater. Res. Bull., 2013, 48(4):1728-1731.
Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property [J]. Dalton Trans., 2012, 41(31):9526-9531.
Zhou Y, Xing G, Chen H, et al. Carbon nanodots sensitized chemiluminescence on peroxomonosulfate- sulfite-hydrochloric acid system and its analytical applications [J]. Talanta, 2012, 99:471-477.
Iwano Y, Kittaka T, Tabuchi H, et al. Study of amorphous carbon nitride films aiming at white light emitting devices [J]. Jpn. J. Appl. Phys., 2008, 47(10):7842-7844.
Titirici M M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses [J]. Green Chem., 2008, 10(11):1204-1212.
Casiraghi C, Ferrari A C, Robertson J. Raman spectroscopy of hydrogenated amorphous carbons [J]. Phys. Rev. B, 2005, 72(8):085401-1-14.
Casiraghi C, Ferrari A C, Robertson J, et al. Ultra-thin carbon layer for high density magnetic storage devices [J]. Diam. Relat. Mater., 2004, 13(4-8):1480-1485.
Hu A, Duley W W. 16-20 m spectra of carbon nanoparticles [J]. Astrophys. J., 2008, 672(1):L81-L83.
Sukanya S L, Sudisha J, Prakash H S, et al. Isolation and characterization of antimicrobial compound from Chromolaena odorata [J]. J. Phytol., 2011, 3(10):26-32.
Chu P K, Li L. Characterization of amorphous and nanocrystalline carbon films [J]. Mater. Chem. Phys., 2006, 96(2-3):253-277.
Udhayakala P, Jayanthi A, Rajendiran T V, et al. Computation and interpretation of vibrational spectra, thermodynamical and HOMO-LUMO analysis of 2-chloro-4-nitroaniline [J]. Int. J. Chem. Tech. Res., 2011, 3(4):1851-1862.
Fuente E, Menndez A J, Dez M A, et al. Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds [J]. J. Phys. Chem. B, 2003, 107(26):6350-6359.
Liao M, Feng Z, Yang S, et al. Anomalous temperature dependence of photoluminescence from a-C:H film deposited by energetic hydrocarbon ion beam [J]. Solid State Commun., 2002, 121(5):287-290.
Gan Z, Xiong S, Wu X, et al. Mechanism of photoluminescence from chemically derived graphene oxide: Role of chemical reduction [J]. Adv. Optical Mater., 2013, 1(12):926-932.
Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photon., 2010, 4(9): 611-622.
Fle M, Budai J, Tth S, et al. Size of spatial confinement at luminescence centers determined from resonant excitation bands of a-C:H photoluminescence [J]. J. Non-Cryst. Solids, 2006, 352(9-20):1340-1343.
Papadimitriou D, Roupakas G, Xue C, et al. Raman and photoluminescence study of magnetron sputtered amorphous carbon films [J]. Thin Solid Films, 2002, 414(1):18-24.
Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. J. Chem. Phys., 1970, 53(3):1126-1130.
Silva S R P, Robertson J, Amaratunga G A J, et al. Nitrogen modification of hydrogenated amorphous carbon films [J]. J. Appl. Phys., 1997, 81(6):2626-2634.
Fanchini G, Tagliaferro A, Conway N M J, et al. Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a-CN:H thin films [J]. Phys. Rev. B, 2002, 66(19):195415-1-9.
Souto S, Pickholz M, Santos M C, et al. Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy [J]. Phys. Rev. B, 1998, 57(4):2536-2540.
Fanchini G, Messina G, Paoletti A, et al. Relationship between composition and position of Raman and IR peaks in amorphous carbon alloys [J]. Surf. Coat. Technol., 2002, 151-152:257-262.
Chien C T, Li S S, Lai W J, et al. Tunable photoluminescence from graphene oxide [J]. Angew. Chem. Int. Ed., 2012, 51(27):6662-6666.
Luo Z, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94(11):111909-1-3.