LU wei-ming, LI Xing, ZHANG Fu-te etc. Defect Detection of Solar Cell Based on Electroluminescence and Thermography Imaging with Different Bias Voltage[J]. Chinese Journal of Luminescence, 2014,35(12): 1511-1519
LU wei-ming, LI Xing, ZHANG Fu-te etc. Defect Detection of Solar Cell Based on Electroluminescence and Thermography Imaging with Different Bias Voltage[J]. Chinese Journal of Luminescence, 2014,35(12): 1511-1519 DOI: 10.3788/fgxb20143512.1511.
Defect Detection of Solar Cell Based on Electroluminescence and Thermography Imaging with Different Bias Voltage
The electroluminescence and infrared thermography were used to detect the defects of the solar cells by applying different forward bias and reverse bias voltage. The solar cell under forward bias mainly emits infrared light from 850 to 1 200 nm due to the recombination of electron and hole. The intensity of the emitted light depends on the series resistance and minority carrier diffusion length of the solar cell
so it can be used to detect the defects of finger disturbing
crack
and electrode etching
et al.
The emission of light under reverse bias is intra-band emission which covers a wide spectrum from visible light to IR. The breakdown can be detected by reverse bias electroluminescence (RBEL). Only under high bias
weak Ohmic shunt appears in RBEL. Linear and nonlinear shunt can be detected using IR thermography under different bias. Strong Ohimc shunt can be detected in forward and reverse bias. The nonlinear shunt depends on the type.
关键词
Keywords
references
Zhang L C, Xu X X, Yang Z J, et al. An efficient method for monitoring the shunts in silicon solar cells during fabrication processes with infrared imaging [J]. J. Semicond., 2009, 30(7):076001-1-4.
Breitenstein O, Langenkamp M, Rakotoniaina J P, et al. The imaging of shunts in solar cells by infrared lock-in thermography [C] //17th European Photovoltaic Solar Energy Conference, IEEE: Munich, 2001:1499-1502.
Li Y H, Pan M, Pang A S, et al. The application of electroluminescence imaging to detection the hidden defects in silicon solar cells [J]. Chin. J. Lumin.(发光学报), 2011, 32(4):378-382 (in Chinese).
Breitenstein O, Bauer J, Trupke T, et al. On the detection of shunts in silicon solar cells by photo and electroluminescence imaging [J]. Prog. Photovolt.: Res. Appl., 2008, 16(4):325-330.
Breitenstein O, Rakotoniaina J P, Al Rifai M H, et al. Shunt types in crystalline silicon solar cells [J]. Prog. Photovolt.: Res. Appl., 2004, 12:529-538.
Breitenstein O, Bauer J, Bothe K, et al. Understanding junction breakdown in multicrystalline solar cells [J]. J. Appl. Phys., 2011, 109(7):071101-1-10.
Wrfel P, Trupke T, Puzzer T, et al. Diffusion lengths of silicon solar cells from luminescence images [J]. J. Appl. Phys., 2007, 101(12):123110-1-10.
Schneemann M, Kirchartz T, Carius R, et al. Measurement and modeling of reverse biased electroluminescence in multi-crystalline silicon solar cells [J]. J. Appl. Phys., 2013, 114(13):134509-1-6.
Breitenstein O, Bauer J, Rakotoniaina J P, et al. Material induced shunts in multicrystalline silicon solar cells [J]. Semicond., 2007, 41(4):440-443.
Xie S W, Xiao X, Tan J J, et al. Recent progress in dye-sensitized solar cells using graphene-based electrodes [J]. Chin. Opt.(中国光学), 2014, 7(1):47-56 (in Chinese).
Lausch D, Petter K, BakowskieR, et al. Identification of pre-breakdown mechanism of silicon solar cells at lowreverse voltages [J]. Appl. Phys. Lett., 2010, 97(7):073506-1-3.