LI Peng, FAN Di, Gao Jie etc. RS Latch Realization by Using Asymmetric Porphyrin Covalently Connecting to Mesoporous Silica Films[J]. Chinese Journal of Luminescence, 2014,35(12): 1480-1486
LI Peng, FAN Di, Gao Jie etc. RS Latch Realization by Using Asymmetric Porphyrin Covalently Connecting to Mesoporous Silica Films[J]. Chinese Journal of Luminescence, 2014,35(12): 1480-1486 DOI: 10.3788/fgxb20143512.1480.
RS Latch Realization by Using Asymmetric Porphyrin Covalently Connecting to Mesoporous Silica Films
ATPP) was prepared and covalently connected to mesoporous silica thin films. Based on the porphyrin compounds's characteristic of being sensitive to acid and base
the molecular logics of RS-latch for sequential logic were achieved. The molecular logics have the advantages of larger surface area
periodic arranged uniform pore structure
and high transmission because of the covalent connection of porphyrin compounds to mesoporous silica. This hybrid mesoporous structure is not only advantageous to the interaction between the inputs and response materials
but also advantageous to the separation of the response materials and inputs without information loss.
关键词
Keywords
references
Pischel U. Advanced molecular logic with memory function [J]. Angew. Chem. Int. Ed., 2010, 49(8):1356-1358.
Andrasson J, Pischel U, Straight S D, et al. All-photonic multifunctional molecular logic device [J]. J. Am. Chem. Soc., 2011, 133(30):11641-11648.
Gust D, Andreasson J, Pischel U, et al. Data and signal processing using photochromic molecules [J]. Chem. Commun., 2012, 48(14):1947-1957.
Andreasson J, Pischel U. Smart molecules at work-mimicking advanced logic operations [J]. Chem. Soc. Rev., 2010, 39(1):174-188.
De Ruiter G, Van der Boom M E. Surface-confined assemblies and polymers for molecular logic [J]. Acc. Chem. Res., 2011, 44(8):563-573.
De Silva P A, Gunaratne N H Q, McCoy C P. A molecular photoionic AND gate based on fluorescent signaling [J]. Nature, 1993, 364(6432):42-44.
Langford S J, Yann T. Molecular logic: A half-subtractor based on tetraphenylporphyrin [J]. J. Am. Chem. Soc., 2003, 125(37):11198-11199.
Margulies D, Melman G, Shanzer A. Fluorescein as a model molecular calculator with reset capability [J]. Nat. Mater., 2005, 4(10):768-771.
Pischel U. Chemical approaches to molecular logic elements for addition and subtraction [J]. Angew. Chem. Int. Ed., 2007, 46(22):4026-4040.
Andreasson J, Straight S D, Moore T A, et al. Molecular all-photonic encoder-decoder [J]. J. Am. Chem. Soc., 2008, 130(33):11122-11128.
Ceroni P, Bergamini G, Balzani V. Old molecules, new concepts: [Ru(bpy)3] 2+ as a molecular encoder-decoder [J]. Angew. Chem. Int. Ed., 2009, 48(45):8516-8518.
Amelia M, Baroncini M, Credi A. A simple unimolecular multiplexer/demultiplexer [J]. Angew. Chem. Int. Ed., 2008, 47(33):6240-6243.
Raymo F M, Alvarado R J, Giordani S, et al. Memory effects based on intermolecular photoinduced proton transfer [J]. J. Am. Chem. Soc., 2003, 125(8):2361-2364.
Baron R, Onopriyenko A, Katz E, et al. An electrochemical/photochemical information processing system using a monolayer-functionalized electrode [J]. Chem. Commun., 2006(20):2147-2149.
Pita M, Strack G, MacVittie K, et al. Set-reset flip-flop memory based on enzyme reactions: Toward memory systems controlled by biochemical pathways [J]. J. Phys. Chem. B, 2009, 113(49):16071-16076.
Periyasamy G, Collin J P, Sauvage J P, et al. Electrochemically driven sequential machines: An implementation of copper rotaxanes [J]. Chem. Eur. J., 2009, 15(6):1310-1313.
Pischel U, Andreasson J. A simplicity-guided approach toward molecular set-reset memories [J]. New J. Chem., 2010, 34(12):2701-2703.
De Ruiter G, Van der Boom M E. Sequential logic and random access memory (RAM): A molecular approach [J]. J. Mater. Chem., 2011, 21(44):17575-17581.
Remn P, Blter M, Li S, et al. An all-photonic molecule-based D flip-flop [J]. J. Am. Chem. Soc., 2011, 133(51):20742-20745.
De Ruiter G, Tartakovsky E, Oded N, et al. Sequential logic operations with surface-confined polypyridyl complexes displaying molecular random access memory features [J]. Angew. Chem. Int. Ed., 2010, 49(1):169-172.
Sanchez C, Lebeau B, Chaput F, et al. Optical properties of functional hybrid organic-inorganic nanocomposites [J]. Adv. Mater., 2003, 15(23):1969-1994.
De la Luz V, Garcia-Sanchez M A, Campero A. Luminescent porphyrinosilica obtained by the sol-gel method [J]. J. Non-Cryst. Solids, 2007, 353(22-23):2143-2149.
Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating [J]. Nature, 1997, 389(6649):364-368.
Kruper W J, Chamberlin T A, Kochanny M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrinsA simple route to bifunctional porphyrins [J]. J. Org. Chem., 1989, 54(11):2753-2756.
Lei B F, Li B, Zhang H R, et al. Mesostructured silica chemically doped with Ru-Ⅱ as a superior optical oxygen sensor [J]. Adv. Funct. Mater., 2006, 16(14):1883-1891.
Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor [J]. J. Mater. Chem., 2006, 16(46):4521-4528.hanny M. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins - a simple route to bifunctional porphyrins[J]. J. Org. Chem., 1989, 54 (11): 2753-2756.
Lei B F, Li B, Zhang H R, et al., Mesostructured silica chemically doped with Ru-II as a superior optical oxygen sensor[J]. Adv. Funct. Mater., 2006, 16 (14): 1883-1891.
Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor[J]. J. Mater. Chem., 2006, 16 (46): 4521-4528.