YANG Yue, ZHAO Cui-zhen, YU Chen-guang etc. Morphological Control of TiO<sub>2</sub> Nanostructures and Photocatalytic Dynamics[J]. Chinese Journal of Luminescence, 2014,35(12): 1449-1454
YANG Yue, ZHAO Cui-zhen, YU Chen-guang etc. Morphological Control of TiO<sub>2</sub> Nanostructures and Photocatalytic Dynamics[J]. Chinese Journal of Luminescence, 2014,35(12): 1449-1454 DOI: 10.3788/fgxb20143512.1449.
Morphological Control of TiO2 Nanostructures and Photocatalytic Dynamics
(100) nanosheet) were prepared for removing dye from wastewater. Transmission electron microscopy results confirmed the formation of nanocup
(001) nanosheet
(100) nanosheet of TiO
2
and the presence of Pt nanoparticles attached on TiO
2
nanostructure. All TiO
2
samples are anatase indicated by X-ray diffraction. The as-prepared Pt/TiO
2
nanocomposites were used as adsorbent to remove dye from wastewater using the organic dye Rhodamine B as adsorbate. The nano-cup Pt/TiO
2
sample exhibited the best efficiency on the degradation rate of Rhodamine B
and the removal ratio of the dye gets to 99.1% less than 1.5 h. Adsorption kinetics and isotherm were investigated and the possible mechanism of the different photocatalytic efficiency was suggested.
关键词
Keywords
references
Xu J H. Studies on The Synthesis and Reaction of Novel Nano-scale TiO2 Photocatalysts [D]. Shanghai: Fudan University, 2007 (in Chinese).
Zhang M. Study of Photocatalytic Property of Modified Nano-structured Titanium Dioxide [D]. Shanghai: East China Normal University, 2009 (in Chinese).
Zhang A B, Ma X Y, Jin L, et al. Electroluminescence of heterostructures formed by p+-Si and TiO2 films derived from oxidation of sputtered Ti films [J]. Chin. J. Lumin.(发光学报), 2011, 32(5):471-475 (in Chinese).
Jiang H, Dai C A. Study of photocatolytic degradation from pollutant water by using namometer TiO2 [J]. J. Northern Jiaotong Univ.(北方交通大学学报), 2003, 27(6):101-105 (in Chinese).
Yang X, Qu Y, Fan Y, et al. Y-branched TiO2 nanotubes prepared by electrochemical anodization [J]. Chin. J. Lumin.(发光学报), 2012, 33(3):269-274 (in Chinese).
Joo J B, Zhang Q, Dahl M, et al. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity [J]. Energy Environ. Sci., 2012, 5(4):6321-6327.
Liu C, Yang D, Yang J, et al. Biomimetic synthesis of TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity [J]. J. Appl. Mater., 2013, 5(9):3824-3832.
Chen S F, Li J P, Qian K, et al. Large scale photochemical synthesis of M@TiO2 nanocomposites (M=Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect [J]. Nano. Res., 2010, 3(4):244-255.
Liang Y Y, Wang H L, Sanchez C H, et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Res., 2010, 3(10):701-705.
Vasileia M D, Maria A, Gianluca L P, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater [J]. Environ. Sci. Technol., 2010, 44(19):7200-7205.
Zhang P, Shao C, Zhang Z, et al. Core/shell nanofibers of TiO2@carbon embedded by Ag nanoparticles with enhanced visible photocatalytic activity [J]. J. Mater. Chem., 2011, 21(44):17746-17753.
Lin Y, Geng Z, Cai H, et al. Ternary grapheme-TiO2-Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability [J]. Eur. J. Inorg. Chem., 2012, 2012(28):4439-4444.
You T, Jiang L, Han K L, et al. Improving the performance of quantum dot-sensitized solar cells by using TiO2 nanosheets with exposed highly reactive facets [J]. Nanotechnol., 2013, 24(24):245401-1-7.
Yu J G, Qi L F, Jaroniec M, et al. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. J. Phys. Chem. C, 2010, 114(30):13118-13125.
Han X G, Qin K, Jin M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. J. Am. Chem. Soc., 2009, 131(9):3152-3153.
Wang W, Lu C H, Su M X, et al. Synthesis, characterization, and nitrogen concentration depended visible-light photoactivity of nitrogen-doped TiO2 nanosheets with dominant (001) facets [J]. Chin. J. Catal.(催化学报), 2012, 33(4):629-636 (in English).
Wei X F, Liu J H, Chua Y Z, et al. Fabrication of O (dye)-terminated anatase TiO2 nanosheets for dye sensitized solar cells [J]. Energy. Environ. Sci., 2011, 4(6):2054-2057.
Liu G, Yu J C, Lu G Q, et al. Crystal facet engineering of semiconductor photocatalysts: Motivations, advances and unique properties [J]. Chem. Commun., 2011, 47(24):6763-6783.
L W, Wu Y, Chen J, et al. Facile preparation of grapheme-Fe3O4 nanocomposites for extraction of dye from aqueous solution [J]. Cryst. Eng. Comm., 2013, 16(4):609-615.
Wang H Q, Miyauchi M, Ishikawa Y, et al. Single-crystalline rutile TiO2 hollow spheres: Room-temperature synthesis, tailored visible-light-extinction, and effective scattering layer for quantum dot-sensitized solar cells [J]. J. Am. Chem. Soc., 2011, 133(47):19102-19111.
Gong X Q, Selloni A. Reactivity of anatase TiO2 nanoparticles: The role of the minority (001) surface [J]. J. Phys. Chem. B, 2005, 109(42):19560-19562.
Zhang H, Fan X, Quan X, et al. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light [J]. Environ. Sci. Technol., 2011, 45(13):5731-5736.
Wang P, Huang B, Dai Y, et al. Plasmonic photocatalysts: Harvesting visible light with noble metalnanoparticles [J]. Phys. Chem. Chem. Phys., 2012, 14(28):9813-9825.
Chen C, Zhao W, Li J, et al. Formation and identification of intermediates in the visible light-assisted photodegradation of sulforhodamine-B dye in aqueous TiO2 dispersion [J]. Environ. Sci. Technol., 2002, 36(16):3604-3611.