HE Ling-yun, LI Xiang-qi,. Low-temperature Synthesis and Luminescent Properties of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>:Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(11): 1306-1310
HE Ling-yun, LI Xiang-qi,. Low-temperature Synthesis and Luminescent Properties of Sr<sub>2</sub>ZnSi<sub>2</sub>O<sub>7</sub>:Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(11): 1306-1310 DOI: 10.3788/fgxb20143511.1306.
Low-temperature Synthesis and Luminescent Properties of Sr2ZnSi2O7:Eu3+
red phosphors were synthesized with mesoporous MCM-41 as silica source
via
a low-temperature hydrothermal route with further calcining. The results indicate that Sr
2
ZnSi
2
O
7
phase appears in the hydrothermal reaction product synthesized at 150 ℃ for 16 h
and pure phase Sr
2
ZnSi
2
O
7
is obtained by further calcining at 950 ℃ for 3 h. Sr
2-
x
ZnSi
2
O
7
:
x
Eu
3+
phosphors can be effectively excited by 392 nm near-ultraviolet radiation and show the typical emission spectra of Eu
3+
. The prominent emission transition is at 615 nm assigned to
5
D
0
7
F
2
. The structure of Sr
2
ZnSi
2
O
7
is not affected by doping appropriate amounts of Eu
3+
. Sr
2-
x
ZnSi
2
O
7
:
x
Eu
3+
phosphor with
x
=0.10 has the highest Eu
3+
emission intensity.
关键词
Keywords
references
Yoshitaka T, Makoto K, Toshiki M. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres [J]. Nature, 2006, 441(7091):325-328.
Zhang J H, Lv W, Hao Z D, et al. Color-tunable white-light emitting BaMg2Al6Si9O3:Eu2+, Tb3+, Mn2+ phosphors via energy transfer [J]. Chin. Opt.(中国光学), 2012, 5(3):203-208 (in Chinese).
Som S, Sharma S K, Lochab S. P. Swift heavy ion induced structural and optical properties of Y2O3:Eu3+ nanophosphor[J]. Mater. Res. Bull., 2013, 48(2):844-851.
Wakefield G, Holland E, Dobson P J, et al. Luminescence properties of nanocrystalline Y2O3:Eu [J]. Adv. Mater., 2001, 13(20):1557-1560.
Cui C E, Jiang G W, Huang P, et al. Effect of Eu3+ concentration on the luminescence properties of Y2O2S:Eu3+, Mg2+, Ti4+ nanotubes [J]. Ceram. Int., 2014, 40(3):4725-4730.
Takaaki T, Tomoaki W, Kenichi K, et al. Synthesis of amphipathic YVO4:Eu3+ nanophosphors by oleate-modified nucleation/hydrothermal-growth process [J]. J. Phys. Chem. C, 2010, 114(9):3763-3769.
Zhang Y Y, Pang R, Li C Y, et al. Reddish orange long lasting phosphorescence of Sm3+ in Sr2ZnSi2O7:Sm3+ phosphors [J]. J. Rare Earths, 2010, 28(5):705-708.
Yao S S, Xue L H, Yan Y W. Photoluminescence properties of M2ZnSi2O7:Eu2+(M=Sr, Ba) [J]. J. Rare Earths, 2010, 28(2):265-268.
Hao Y, Wang Y H. Synthesis and photoluminescence of new phosphors M2(Mg, Zn)Si2O7:Mn2+ (M=Ca, Sr, Ba) [J]. Mater. Res. Bull., 2007, 42(12):2219-2223.
Li X Q, Chen F Y. Structure and luminescence properties of Zn2SiO4:Mn phosphor prepared with MCM-48 [J]. Mater. Res. Bull., 2013, 48(6):2304-2307.
Lu Q S, Li J G. Low-temperature synthesis of Y2SiO5:Eu3+ powders using mesoporous silica and their luminescence properties [J]. Opt. Mater., 2011, 33(3):381-384.
Schacht S, Janicke M, Schuth F. Modeling X-ray patterns and TEM images of MCM-41 [J]. Microp. Mesop. Mater., 1998, 22:485-493.
Khodakovsky I L, Elkin A E. Experimental determination of znicite solubility in water and NaOH aqueous solutions at temperatures 100, 150, and 200 ℃ [J]. Rev. Mineral. Geochem., 1975, 10:1490-1497.
Nagabhushana H, Nagabhushana B M, Madesh K M, et al. Synthesis, characterization and photoluminescence properties of CaSiO3:Eu3+ red phosphor [J]. Spectrochim. Acta, Part A, 2011, 78(1):64-69.
Zhang S A, Hu Y H, Chen L, et al. Photoluminescence properties of Ca3WO6:Eu3+ red phosphor [J]. J. Lumin., 2013, 142:116-121.
Research Progress of Mn4+ Activated Typical LED Red Phosphors
Synthesis and Luminescence Properties of CaGd2(MoO4)4:Eu3+,Bi3+ Red Phosphors
Degradation Behavior of K2SiF6:Mn4+ Phosphors Under Heat-moisture Conditions
Luminescent Properties of CaYAlO4:Mn4+ Red Phosphors Prepared by Sol-gel Method
Hydrothermal Synthesis and Luminescent Properties of NaEu(MoO4)2-x(WO4)x Solid Solution Microcrystallines
Related Author
Xian-ping FAN
Xu-sheng QIAO
Meng-ting HE
Wei ZHANG
ZHU Da-chuan
HAN Tao
YU Hong
JING Xiao-long
Related Institution
State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University
Chongqing Key Laboratory of Micro/Nano Materials Engineering and Technology, Research Institute for New Material Technology, Chongqing University of Arts and Sciences
College of Material Science and Engineering, Sichuan University, Chengdu 610065, China
School of Material Science and Engineering, Southeast University
College of Chemistry and Materials Science, Guangxi Teachers Education University