浏览全部资源
扫码关注微信
1. 江苏大学 汽车与交通工程学院,江苏 镇江,212013
2. 江苏大学 车辆产品实验室,江苏 镇江,212013
Received:18 June 2014,
Revised:04 July 2014,
Published:03 October 2014
移动端阅览
赵新杰, 蔡忆昔, 王静等. 基于半导体制冷技术的LED前照灯散热器设计与优化[J]. 发光学报, 2014,35(10): 1269-1275
ZHAO Xin-jie, CAI Yi-xi, WANG Jing etc. Thermal Model Design and Optimize of LED Headlamp Cooling Device Based on Semiconductor Refrigeration[J]. Chinese Journal of Luminescence, 2014,35(10): 1269-1275
赵新杰, 蔡忆昔, 王静等. 基于半导体制冷技术的LED前照灯散热器设计与优化[J]. 发光学报, 2014,35(10): 1269-1275 DOI: 10.3788/fgxb20143510.1269.
ZHAO Xin-jie, CAI Yi-xi, WANG Jing etc. Thermal Model Design and Optimize of LED Headlamp Cooling Device Based on Semiconductor Refrigeration[J]. Chinese Journal of Luminescence, 2014,35(10): 1269-1275 DOI: 10.3788/fgxb20143510.1269.
针对大功率LED汽车前照灯的结构、性能要求,提出了基于热电制冷效应的散热方案,并对不同类型散热系统散热性能进行了试验研究。结果表明:半导体制冷器对外部风扇风速或冷却液流速的敏感性分别高于风冷和液冷散热装置,模型一(风冷+热电制冷)和模型二(液冷+热电制冷)的制冷片最佳工作电流分别为3.0 A和5.0 A。当环境温度在极限范围(60~65 ℃)时,计算得到芯片的结温为55.5 ℃,光通量为1 458.8 lm。所设计的基于热电制冷散热系统可以满足使用要求。
The enhanced cooling models based on thermoelectric effect were presented to meet the thermal demand of high-power LED headlight. The cooling performance of different device was evaluated and compared through measuring the LED case temperature. It is found that the thermoelectric cooler is more sensitive to the external fan speed than the purely enforced air cooler. In addition
the optimal drive currents for the model one (air cooling+TEC) and model two (liquid cooling+TEC) are 3 A and 5 A
respectively. When the ambient temperature within its limit level (60-65 ℃)
the junction temperature can be calculated to be 55.5℃
and the output light is 1 458.8 lm.
Arik M, Petroski J, Weaver S. Thermal challenges in the future generation solid state lighting applications: Light emitting diodes[C]// IEEE Intersociety Conf. Thermal Phenomena, Hawaii: IEEE, 2002a:113-120.
Tian C J, Zhang X, Zou J, et al. Temperature effect on the photoelectric parameter of high-power LED illumination system[J]. Chin. J. Lumin.(发光学报), 2010, 31(1):96-100 (in Chinese).
Kang B, Yong B, Park K. Performance evaluations of LED headlamps[J]. Inter. J. Automotive Technol., 2010, 11(5):737-742.
Steele R V. LED automotive headlamps move closer to market[J]. Laser Focus World, 2005, 41(11):91-95.
Yan L, Nicolas C, Frank B, et al. Liquid cooling of bright LEDs for automotive applications[J]. Appl. Thermal Eng., 2009, 29(5-6):1239-1244.
Lan K, Jong H C, Sun H J, et al. Thermal analysis of LED array system with heat pipe[J]. Thermochim. Acta, 2007, 455:21-25.
Liu S, Yang J H, Gan Z Y, et al. Structural optimization of a microjet based cooling system for high power LEDs[J]. Inter. J. Thermal Sci., 2008, 47:1086-1095.
Wan Z M, Chen M, Liu W, et al. Research on porous micro heat sink for thermal management of high power LED[J]. J. Mechan. Eng.(机械工程学报), 2010, 46(8):109-113 (in Chinese).
Cheng J H, Liu C K, Chao Y L, et al. Cooling performance of silicon-based thermoelectric device on high power LED[C]//24th International Conference on Thermoelectrics, Clemson, 2005:53-56.
Maaspuro M, Tuominen A. Thermal analysis of LED spot lighting device operating in external natural or forced heat convection[J]. Microelectron. Reliab., 2013, 53:428-434.
Cheng T, Luo X B, Huang S Y, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution[J]. Inter. J. Thermal Sci., 2010, 49:196-201.
Fei X, Qian K Y, Luo Y. Junction temperature measurement and luminous properties research of high-power LED[J]. J. OptoelectronicsLaser (光电子激光), 2008, 19(3):289-292 (in Chinese).
Huang B J, Chen C W, Ong C D. Development of constant-power driving control for light-emitting-diode (LED) luminaire[J]. Appl. Thermal Eng., 2013, 50:645-651.
0
Views
123
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution