浏览全部资源
扫码关注微信
1. 中国科学院长春应用化学研究所高分子物理与化学国家重点实验室,吉林 长春,130022
2. 长春师范大学 物理学院,吉林 长春,130032
Received:12 July 2014,
Revised:21 August 2014,
Published:03 October 2014
移动端阅览
贺小光, 王宁, 田苗苗. 八羟基喹啉铝取代钙作为电子传输层对聚合物太阳电池光稳定性的影响[J]. 发光学报, 2014,35(10): 1240-1245
HE Xiao-guang, WANG Ning, TIAN Miao-miao. Influence of Alq<sub>3</sub> as Electron Extraction Layer Instead of Ca on Photovoltaic Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2014,35(10): 1240-1245
贺小光, 王宁, 田苗苗. 八羟基喹啉铝取代钙作为电子传输层对聚合物太阳电池光稳定性的影响[J]. 发光学报, 2014,35(10): 1240-1245 DOI: 10.3788/fgxb20143510.1240.
HE Xiao-guang, WANG Ning, TIAN Miao-miao. Influence of Alq<sub>3</sub> as Electron Extraction Layer Instead of Ca on Photovoltaic Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2014,35(10): 1240-1245 DOI: 10.3788/fgxb20143510.1240.
通过选择高效窄带隙聚合物给体材料PTB7与电子受体材料PC71BM作为聚合物太阳电池的活性层,采用Glass/ITO/poly(ethylenedioxythiophene):polystyrene sulphonate(PEDOT:PSS)/PTB7:PC
71
BM/electron extraction layer(EEL)/Al的器件结构研究了不同EEL对器件性能及光稳定性的影响。通过采用小分子有机材料Alq
3
与低功函数碱金属Ca作为EEL,发现由于Ca的活泼金属特性及不稳定性,以Ca作为EEL的聚合物太阳电池的初始效率在3d之后就下降了60%;而以Alq
3
作为EEL的器件在空气中放置一个月之后其初始效率仅下降30%。此外,以Alq
3
作为EEL的器件光伏效率完全比得上传统器件中以Ca作为EEL的光伏器件。研究结果表明,Alq
3
是一种潜在的长寿命聚合物太阳电池的EEL材料。
Thieno thiophene/benzodithiophene (PTB7) and -phenyl C71-butyric acid methyl ester (PC
71
BM) were selected as donor and acceptor
respectively. The device architecture was glass/ITO/poly(ethylenedioxythiophene):polystyrene sulphonate (PEDOT:PSS)/PTB7: PC
71
BM/electron extraction layer (EEL)/aluminum. For comparison
tris (8-hydroxyquinoline) aluminum (Alq
3
) and calcium (Ca) were used as EEL to reveal their influence on the performance (power conversion efficiency (PCE)
short-circuit current density (
J
SC
)
open-circuit voltage (
V
OC
)
and fill factor (
FF
)) of the OPVs. As a result
PCE of the device with Ca as EEL rapidly reduced over 60% after three days due to the poor stability of Ca. The device with Alq
3
as EEL showed favorable stability owing to the PCE moderate declined less than 30% after one month. Furthermore
PCE of the device with Alq
3
as EEL was fully comparable to that with Ca as EEL. Our results indicate that Alq
3
is an alternative candidate for high-performance and long-term photo-stability OPVs.
Zhu R, Kumar A, Yang Y. Polarizing organic photovoltaics[J]. Adv. Mater., 2011, 23:4193-4198.
Bundgaard E, Krebs F C. A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies[J]. Sol. Energ. Mat. Sol. C, 2007, 91:954-985.
Bailey B A, Reese M O, Olson D C, et al. Efficient polymer solar cells on opaque substrates with a laminated PEDOT:PSS top electrode[J]. Org. Electron., 2011, 12:108-112.
Xie S W, Xiao X, Tan J J, et al. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chin. Opt.(中国光学), 2014, 7(1):47-56 (in Chinese).
Sharma G D, Balraju P, Mikroyannidis J A, et al. Perylene imides for organic photovoltaics: Yesterday, today, and tomorrow[J]. Sol. Energ. Mat. Sol. C, 2009, 93:2025-2028.
Huo L, Zhang S, Guo X, et al. Replacing alkoxy groups with alkylthienyl groups: A feasible approach to improve the properties of photovoltaic polymers[J]. Angew. Chem. Int. Edit., 2011, 50:9697-9702.
He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012, 6:591-595.
You J, Dou L, Yoshimura K, et al. Revealing the dynamics of charge carriers in polymer: Fullerene blends using photoinduced time-resolved microwave conductivity[J]. Nat. Commun., 2013, 4:1446-1446.
Chang C Y, Wu C E, Chen S Y, et al. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods[J]. Angew. Chem. Int. Edit., 2011, 50:9386-9390.
Hauch J A, Schilinsky P, Choulis S A, et al. Fabrication and characterization of polysilane: PCBM bulk heterojunction solar cells[J]. Sol. Energ. Mat.Sol. C, 2008, 92:727-731.
Li J Q, Liu C X, Guo W B. Role of solution-processed V2O5 in organic solar cell[J]. Chin. J. Lumin.(发光学报), 2013, 34(9):1245-1249 (in Chinese).
Li C, Zhang T, Xue W. Improvement of polymer crystallinity in poly(3-hexylthiophene)-based solar cells via solvent vapor pretreatment-assisted thermal annealing[J]. Chin. J. Lumin.(发光学报), 2014, 35(2):202-206 (in Chinese).
Pandey A K, Aljada M, Velusamy M, et al. Nanostructured, active organic-metal junctions for highly efficient charge generation and extraction in polymer-fullerene solar cells[J]. Adv. Mater., 2012, 24:1055-1061.
Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer[J]. Adv. Mater., 2006, 18:572-576.
Walzer K, Maennig B, Pfeiffer M, et al. Highly efficient organic devices based on electrically doped transport layers[J]. Chem. Rev., 2007, 107:1233-1271.
Tavakkoli M, Ajeian R, Badrabadi M N, et al. Photovoltaic cells technology: Principles and recent developments[J]. Sol. Energ. Mat. Sol. C, 2011, 95:1964-1969.
Voroshazi E, Verreet B, Aernouts T, et al. The influence of transport layers on the photodegradation stability of polymer solar cell structures[J]. Sol. Energ. Mat. Sol. C, 2011, 95:1303-1307.
Wang L J, Zhang W, Qin H T, et al. Influence of solution-processed conditions on polymer bulk heterojunction solar cell performance[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2013, 28(4):521-526 (in Chinese).
Wagner J, Gruber M, Hinderhofer A, et al. High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material[J]. Adv. Funct. Mater., 2010, 20:4295-4303.
0
Views
101
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution