浏览全部资源
扫码关注微信
浙江工业大学理学院 应用物理系,浙江 杭州,310023
Received:07 June 2014,
Revised:10 August 2014,
Published:03 October 2014
移动端阅览
陈中师, 王河林, 隋成华等. 基于CdSe/ZnS核壳量子点薄膜的荧光温度传感器[J]. 发光学报, 2014,35(10): 1215-1220
CHEN Zhong-shi, WANG He-lin, SUI Cheng-hua etc. Fluorescence Temperature Sensor Based on CdSe/ZnS Core-shell Quantum Dots Thin Film[J]. Chinese Journal of Luminescence, 2014,35(10): 1215-1220
陈中师, 王河林, 隋成华等. 基于CdSe/ZnS核壳量子点薄膜的荧光温度传感器[J]. 发光学报, 2014,35(10): 1215-1220 DOI: 10.3788/fgxb20143510.1215.
CHEN Zhong-shi, WANG He-lin, SUI Cheng-hua etc. Fluorescence Temperature Sensor Based on CdSe/ZnS Core-shell Quantum Dots Thin Film[J]. Chinese Journal of Luminescence, 2014,35(10): 1215-1220 DOI: 10.3788/fgxb20143510.1215.
设计了基于CdSe/ZnS核壳量子点薄膜发光谱温变特性的温度传感器。在30~160 ℃温度范围内,CdSe/ZnS核壳量子点的光致荧光(PL)谱随温度呈现规律性变化。温度升高时,PL谱自参考峰值强度减小、峰值波长增大、半峰全宽增大;而且PL谱自参考峰值强度、峰值波长和半峰全宽温变特性分别非常符合一次、一次和二次拟合函数关系,其对应的相关性指数
R
2
均达到96.6%以上;PL谱峰值波长温变灵敏度达到0.06 nm/℃,分辨率约为0.1 ℃。同时,采用PL谱自参考峰值强度比单纯的PL谱峰值强度更具有温度测量稳定性和精确性。
A temperature sensor based on the temperature characteristics of photoluminescence (PL) of CdSe/ZnS core-shell quantum dots (QDs) thin film was designed and fabricated. The results show that PL of CdSe/ZnS QDs thin film changes regularly with the temperature increasing in the range of 30~160 ℃. The self-reference peak intensity of PL decreases with the temperature increasing
while their peak wavelength and full width at half maximum (FWHM) increase. Moreover
the temperature characteristics of self-reference peak intensity
peak wavelength
and FWHM are respectively obtained by fitting one
one and two times fitting function relations. The corresponding correlation indexes
R
2
are all above 96.6%. The temperature sensitivity of peak wavelength is 0.06 nm/℃
and the resolution is about 0.1 ℃. Besides
the temperature detecting by self-reference peak intensity is more stable and accuracy than that only by peak intensity.
Fang Y J, Xue F, Chen M C. Design of new thermocouple temperature data acquisition system[J]. J. Transduc. Technol. (传感器技术), 2005, 24(11):47-49 (in Chinese).
Ouyang H B, Tang Y G, Gao S. Novel multi-function humidity gauge for air based on thermistor[J]. J. Transduc. Technol.(传感器技术), 2004, 23(9):45-46 (in Chinese).
Wang H L, Yang A J, Sui C H. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film[J]. Optoelectron. Lett., 2013, 9(6):421-424.
Shi Z, He Y, Cai J J, et al. Synthesis and characterization of ZnO@graphene quantum dots with core-shell structure[J]. Chin. J. Lumin.(发光学报), 2014, 35(2):137-141 (in Chinese).
Xu Q, Wei H P, Hu X Y. Glutathione detection based on ZnS quantum-dot-based OFF-ON fluorescent probe[J]. Chin. J. Anal. Chem.(分析化学), 2013, 41(7):1102-1106 (in Chinese).
Liu Z, Li C B, Xue C L, et al. Progress in Ge/Si heterostructures for light emitters[J]. Chin. Opt.(中国光学), 2013, 6(4):449-456 (in Chinese).
Walker G W, Sundar V C, Rudzinski C M, et al. Quantum-dot optical temperature probes[J]. Phys. Rev. Lett., 2003, 83(17):3555-3557.
Bastida G D, Goicoechea J, Matias I R. Quantum dots-based optical fiber temperature sensors fabricated by layer-by-layer[J]. IEEE Sens. J., 2006, 6(6):1378-1379.
Costa-Fernandez J M, Pereiro R, Sanz-Medel A. The use of luminescent quantum dots for optical sensing[J]. Trends Anal. Chem., 2006, 25(3):207-218.
Yan H Z, Cheng C, Zhang Q H. Temperature impact on absorption spectrum and photoluminescence spectrum of CdSe/ZnS quantum dots[J]. Chin. J. Lumin.(发光学报), 2008, 29(1):166-170 (in Chinese).
Larrion B, Hernaez M, Arregui F J, et al. Photonic crystal fiber temperature sensor based on quantum dot nanocoatings[J]. J. Sens., 2009, 2009:932471-1-6.
Yu H C Y, Leon-Saval S G, Argyros A, et al. Temperature effects on emission of quantum dots embedded in polymethylmethacrylate[J]. Appl. Opt., 2010, 49(15):2749-2752.
Valerini D, Cret A, Lomascolo M. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell[J]. Phys. Rev. B, 2005, 71(23):235409-1-6.
Morello G, Giorgi M D, Kudera D, et al. Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots[J]. J. Phys. Chem. C, 2007, 111(16):5846-5849.
Chon B, Bang J, Park J, et al. Unique temperature dependence and blinking behavior of CdTe/CdSe (core/shell) type-Ⅱ quantum dots[J]. J. Phys. Chem. C, 2011, 115(2):436-442.
Jing P T, Zheng J J, Ikezawa M, et al. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots[J]. J. Phys. Chem. C, 2009, 113(31):13545-13550.
Jorge P A S, Mayeh M, Benrashid R, et al. Quantum dots as self-referenced optical fibre temperature probes for luminescent chemical sensors[J]. Meas. Sci. Technol., 2006, 17(5):1032-1038.
Zhang Y, Cheng W C, Zhang T Q, et al. Critical size of temperature-dependent band shift in colloidal PbSe quantum dots[J]. Curr. Nanosci., 2012, 8(6):909-913.
Olkhovets A, Hsu R C, Lipovskii A, et al. Size-dependent temperature variation of the energy gap in lead-salt quantum dots[J]. Phys. Rev. Lett., 1998, 81(16):3539-3542.
Lee J, Koteles E S, Vassell M O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K[J]. Phys. Rev. B, 1986, 33(8):5512-5516.
0
Views
249
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution