AN Ning, LIU Guo-jun, LI Zhan-guo etc. 2 μm InGaAsSb/AlGaAsSb Multi-quantum Well Laser Diode with Electron Stopper Layer[J]. Chinese Journal of Luminescence, 2014,35(10): 1205-1209
AN Ning, LIU Guo-jun, LI Zhan-guo etc. 2 μm InGaAsSb/AlGaAsSb Multi-quantum Well Laser Diode with Electron Stopper Layer[J]. Chinese Journal of Luminescence, 2014,35(10): 1205-1209 DOI: 10.3788/fgxb20143510.1205.
2 μm InGaAsSb/AlGaAsSb Multi-quantum Well Laser Diode with Electron Stopper Layer
为了降低2 m InGaAsSb/AlGaAsSb 量子阱激光器的阈值电流并获得良好的温度特性,在p型波导层及限制层之间引入AlGaAsSb电子阻挡层。采用理论计算方法模拟了电子阻挡层对 InGaAsSb/AlGaAsSb LD输出特性的影响。研究结果表明:电子阻挡层结构可有效减少2 m InGaAsSb/AlGaAsSb 量子阱激光器的Auger复合,抑制量子阱中导带电子向p型限制层的溢出,降低器件的阈值电流,同时改善了温度敏感特性。
Abstract
In order to reduce the threshold current and obtain the good temperature characteristics of 2 m InGaAsSb/AlGaAsSb diode laser
AlGaAsSb electronic stopper layer (ESL) was introduced between p-waveguide and p-cladding layer. The research was conducted by LASTIP. The simulated results reveal that ESL can reduce the threshold current and improve the temperature characteristics of LD effectively. All the advantages are due to the lower Auger recombination rate in the quantum wells and smaller electron concentrations in the p-side
which are caused by the higher band offset between ESL and p-waveguide.
关键词
Keywords
references
Shterengas L, Belenky G, Kisin M V, et al. High power 2.4 m heavily strained type-I quantum well GaSb-based diode lasers with more than 1 W of continuous wave output power and a maximum power-conversion efficiency of 17.5%[J]. Appl. Phys. Lett., 2007, 90(1):011119-1-3.
Shan H, Li M. Effects of structure of InGaAsSb/AlGaAsSb multi-quantum well based on Al and In change on X-ray double crystal diffraction and photoluminescence properties[J]. Chin. J. Lumin.(发光学报), 2013, 34(1):68-71 (in Chinese).
Wagner J, Mann C, Rattunde M, et al. Infrared semiconductor lasers for sensing and diagnostics[J]. Appl. Phys. A, 2004, 78(4):505-512.
Reboul J R, Cerutti L, Rodriguez J B, et al. Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si[J]. Appl. Phys. Lett., 2011, 99(12):121113-1-3.
Xia R D, Chang Y, Zhuang W H. The Auger compound analysis of DH laser[J]. Acta Electronic Sinica (电子学报), 1985, 23(8):112-114 (in Chinese).
Chen T R. Carrier leakage and temperature sensitivity of threshold current in InGaAsP/InP lasers[J]. Acta Electronica Sinica (电子学报), 1985, 13(1):65-71 (in Chinese).
Zhao F, Zhang Y Y, Song J J, et al. High internal quantum efficiency blue light-emitting diodes with triangular shaped InGaN/GaN multiple quantum wells[J]. Chin. J. Lumin.(发光学报), 2013, 34(1):66-72 (in Chinese).
Chen Q D. Temperature dependence of threshold current in 1.3 m InGaAsP/InP double heterostructure lasers[J]. Semicond. Optoelectron.(半导体光电), 1990, 11(2):156-161 (in Chinese).
Xu H W, Ning Y Q, Zeng Y G, et al. Design and epitaxial growth of quantum-well for 852 nm laser diode[J]. Opt. Precision Eng.(光学 精密工程), 2013, 21(3):590-597 (in Chinese).
Li Z G. Study on Epitaxial Growth of 2 m Semiconductor Laser Materials and Device Fabrication[D]. Changchun: Changchun University of Science and Technology, 2010 (in Chinese).
Yu H L, Chen X Y, Di J A. Spin concentration grating and electron spin ambipolar diffusion in intrinsic GaAs multiple quantum wells[J]. Chin. Opt.(中国光学), 2013, 6(5):710-716 (in Chinese).
Alahyarizadeh G H, Hassan Z, Thahab S M, et al. Investigation of the performance characteristics of 500 nm to 510 nm green InGaN MQWs laser diodes[J]. Digest J. Nanomater. Biostruct., 2013, 8(2):529-540.
Borca T T, Song D W, Meyer J R, et al. Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices[J]. J. Appl. Phys., 2002, 92(9):4994-4998.
Zhou S L, Xiong D P, Qin Y L. Considerations of dopant-dependent bandgap narrowing for accurate device simulation in abrupt HBTs[J]. J. Semicond., 2009, 30(4):044003-1-4.
Liu D, Ning Y Q, Zhang J L, et al. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(10):2147-2153 (in Chinese).