LI Ting, FANG Fang, ZHOU Zheng etc. Preparation and Luminescent Properties of Upright Zn<sub>2</sub>GeO<sub>4</sub>/ZnO Nanorod Arrays[J]. Chinese Journal of Luminescence, 2014,35(10): 1188-1193
LI Ting, FANG Fang, ZHOU Zheng etc. Preparation and Luminescent Properties of Upright Zn<sub>2</sub>GeO<sub>4</sub>/ZnO Nanorod Arrays[J]. Chinese Journal of Luminescence, 2014,35(10): 1188-1193 DOI: 10.3788/fgxb20143510.1188.
Preparation and Luminescent Properties of Upright Zn2GeO4/ZnO Nanorod Arrays
/ZnO nanorod arrays were prepared on silicon wafer with two kinds of seed layers (metal Au and ZnO seed) by the chemical vapor deposition(CVD) method. Scanning electron microscopy (SEM)
X-ray diffractometer (XRD) and photoluminescence (PL) measurements were used to characterize the samples and reaseach its luminescence properties. The results show that the radius of Zn
2
GeO
4
/ZnO nanorod is 350-400 nm and the length is 10-11 m. The photoluminescence spectrum (PL) of Zn
2
GeO
4
nanorods exhibites three fluorescence emission peaks centered at 415
445
488 nm. Moreover
a detailed description of the probable growth mechanism of the upright Zn
2
GeO
4
/ZnO nanorod arrays was discussed. Its vertical orientation is desirable for use in optoelectronic field.
关键词
Keywords
references
Pitzschke D, Bensch W. In2Ge6O15(en)2: A In-Ge compound composed of germanate layers linked by pillars of In2O6N4 double octahedral[J]. Angew. Chem., 2003, 42(36):4389-4391.
Gu Z, Liu F, Li X, et al. Luminescent Zn2GeO4 nanorod arrays and nanowires[J]. Phys. Chem. Chem. Phys., 2013, 15(20):7488-7493.
Liu Z, Jing X, Wang L, et al. Luminescence of native defects in Zn2GeO4[J]. J. Electrochem. Soc., 2007, 154(6):500-504.
Lewis J S, Holloway P H. Sputter deposition and electroluminescence of Zn2GeO4:Mn[J]. J. Electrochem. Soc., 2000, 147(8):3148-3150.
Yan C Y, Singh N D, Lee P S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time[J]. Appl. Phys. Lett., 2010, 96(5):1794-1795.
Minami T, Miyata T, Sakagami Y. TFEL devices using oxide thin films without vacuum process[J]. Surf. Coatings Technol., 1998, 4235(108):594-595.
Bender J P, Wager J F, Kissick J, et al. Zn2GeO4:Mn alternating-current thin-film electroluminescent devices[J]. J. Lumin., 2002, 99(4):311-315.
Li C, Bando Y, Liao M, et al. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire[J]. Appl. Phys. Lett., 2010, 97(16):161101-1-3.
Feng J K, Lai M O, Lu L. Influence of grain size on lithium storage performance of germanium oxide films[J]. Electrochim. Acta, 2012, 62(10):103-108.
Huang J H, Ding K N, Hou Y D, et al. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water[J]. Chem. Sus. Chem., 2008, 1(12):1011-1019.
Zhang L, Cao X F, Ma Y L, et al. Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres[J]. Cryst. Eng. Commun., 2010, 12(1):207-210.
Liu Q, Zhou Y, Kou J, et al. High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel[J]. J. Am. Chem. Soc., 2010, 132(41):14385-14387.
Pei L Z, Yang Y, Yang L J, et al. Large-scale synthesis and the roles of growth conditions on the formation of Zn2GeO4 nanorods[J]. Solid State Commun., 2011, 151(14-15):1036-1041.
Kim H W, Na H G, Yang J C, et al. Temperature-controlled synthesis of Zn2GeO4 nanowires in a vapor-liquid-solid mode and their photoluminescence properties[J]. Chem. Eng. J., 2011, 171(3):1439-1445.
Cao B B, Chen J J, Huang R, et al. Axial growth of Zn2GeO4/ZnO nanowire heterojunction using chemical vapor deposition[J]. J. Cryst. Growth, 2011, 316(1):46-50.
Sun H, Zhang Q F, Wu J L. Ultraviolet light emitting diode based on ZnO nanowires[J]. Acta Phys. Sinica (物理学报), 2007, 56(6):3479-3482 (in Chinese)..
Sheng Y. Preparation and Characterization of Semiconductor Nanowires for Optoelectronic Devices[D]. Nanjing: University of Nanjing, 2013 (in Chinese).
Studenikin S A, Cocivera M, Kellner W, et al. Band-edge photoluminescence in polycrystalline ZnO flms at 1.7 K[J]. J. Lumin., 2000, 91(3-4):223-227.
Li L, Su Y, ChenY Q, et al. Photoluminescence properties of hierarchical zinc germanate nanostructures[J]. Adv. Sci. Lett., 2010, 3(1):1-5.
Hung C C, Chang M P, Cheng Y H, et al. Growth of Zn2GeO4 and Cu-doped Zn2GeO4 nanowires by thermal evaporation[J]. J. Electrochem. Soc., 2010, 157(4):80-83.
Su Y, He Z Y, Chen Y Q, et al. Bulk-quantity synthesis and photoluminescence properties of chain-like GeO2/ZnGeO3 crystal structures[J]. Mater. Lett., 2005, 59(24-25):2990-2993.
Shi X F, Guo M X, Liu H F, et al. Influence of sputtering pressure on properties of Ti, Ga co-doped zinc oxide thin films[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(1):54-58 (in Chinese).