浏览全部资源
扫码关注微信
1. 兰州理工大学 理学院, 甘肃 兰州 730050
2. 东莞理工学院 电子工程学院, 广东 东莞 523808
Received:09 May 2014,
Revised:02 July 2014,
Published:03 September 2014
移动端阅览
侯尚林, 葛伟青, 刘延君等. 非均匀光子晶体光纤光栅慢光的研究[J]. 发光学报, 2014,35(9): 1138-1142
HOU Shang-lin, GE Wei-qing, LIU Yan-jun etc. Investigation on Slow Light in Nonuniform Photonic Crystal Fiber Gratings[J]. Chinese Journal of Luminescence, 2014,35(9): 1138-1142
侯尚林, 葛伟青, 刘延君等. 非均匀光子晶体光纤光栅慢光的研究[J]. 发光学报, 2014,35(9): 1138-1142 DOI: 10.3788/fgxb20143509.1138.
HOU Shang-lin, GE Wei-qing, LIU Yan-jun etc. Investigation on Slow Light in Nonuniform Photonic Crystal Fiber Gratings[J]. Chinese Journal of Luminescence, 2014,35(9): 1138-1142 DOI: 10.3788/fgxb20143509.1138.
利用改进的全矢量有效折射率方法结合耦合模理论和传输矩阵法,研究了高斯切趾和线性啁啾对光子晶体光纤光栅群时延的影响。结果表明:随着高斯切趾系数的增大,群时延最大值先增后减,即存在群时延最大的切趾系数。线性啁啾使得光栅群时延产生一段线性良好的区域,而且啁啾系数的绝对值增大时,群时延的线性区域扩大。但是,线性啁啾并不能使光栅在某一波段获得较小的群速度。高斯切趾可以有效调节最大群时延峰的带宽和高度,是一种有效调节光栅群速度的方法。
Based on improved effective index method
the coupled-mode theory and transmission matrix method
the influence of Gaussian apodizations and chirp coefficients on group delay of photonic crystal fiber Bragg gratings are demonstrated. The results indicate that the group delay first increases and then decreases when apodization coefficients increase
which means that the maximum value of group delay can be obtained at a given apodization coefficient. A good linear area of the group delay can be obtained by linear chirp gratings
and the linear area is broadened by increasing the absolute value of chirp coefficient. But linear chirp gratings don't get smaller group velocity in a particular band. Gaussian apodization is an effective way to tailor the group delay of fiber gratings
which can not only adjust the full width at half maximum but also influence the height.
Boyd R W. Slow and fast light: Fundamentals and applications [J]. J. Modern Opt., 2009, 56:1908-1915.
Jacob B K. Slow light in various media: A tutorial [J]. Adv. Opt. Photon., 2010, 2:287-318.
Boyd R W. Material slow light and structural slow light: Similarities and differences for nonlinear optics [J]. J. Opt. Soc. Am. B, 2011, 28(12):A38-A44.
Li Q, Yu M, Zhuo Z C, et al. Study on delay and dispersion characteristics of the fiber Bragg grating Fabry-Perot cavity [J]. Acta Optica Sinica (光学学报), 2013, 33(8):0806001-1-5 (in Chinese).
Joe T M, Martijn C S, Ian C M L, et al. Dispersionless slow light using gap solitons [J]. Nat. Phys., 2006, 2:775-780.
Janner D, Gakzerano G, Della G V, et al. Slow light in periodic superstructure Bragg gratings [J]. Phys. Rev. E, 2005, 72(5):056605-1-5.
He W, Matt T, Fan S H, et al. Sensing with slow light in fiber Bragg gratings [J]. Sens. J., 2012, 12(1):156-163.
Zhang Y N. Disign and optimization of low-loss low-nonlinear high negative-dispersion photonic crystal fiber [J]. Acta Phys. Sinica (物理学报), 2012, 61(8):084213-1-5 (in Chinese).
Huseyin A, Shyqyri H. Endlessly single mode photonic crystal fiber with improved effective mode area [J]. Opt. Commun., 2012, 285(6):1514-1518.
Huang C L, Huang Y L. Reseach on resonance properties of photonic crystal fiber Bragg grating [J]. Laser & Optoelectronics Prog. (激光与光电子学进展), 2012, 49(4):040601-1-5 (in Chinese).
Liu R, Qu R H, Cai H W, et al. Analysis of the transmission spectral characteristics of fiber Bragg grating in photonic crystal fibers [J]. Acta Optica Sinica (光学学报), 2006, 26(7):1007-1012 (in Chinese).
Bi W H, Li J P, Qi Y F. Reflection spectra characteristics of the grapefruit-type photonic crystal fiber chirped grating [J]. Acta Optica Sinica (光学学报), 2012, 32(6):0606001-1-5 (in Chinese).
Kwang N P, Kyung S L. Improved effective-index method for analysis of photonic crystal fibers [J]. Opt. Lett., 2005, 30(9):958-960.
Song M Q, Hou S L, Zhang B X, et al. Invesrigation on slow light of photonic crystal fiber Bragg gratings [J]. Infrared Laser Eng.(红外与激光工程), 2013, 42(6):1547-1552 (in Chinese).
Kamal K, Sinha R K, Anshu D V. Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber [J]. Opt. Lasers Eng., 2012, 50:182-186.
Erdogan T. Fiber grating spectra [J]. J. Lightwave Technol., 1997, 15(8):1277-1294.
Li Y Q, Cui M. Optical Waveguide Theory and Technology [M]. Beijing: Posts & Telecom Press, 2002:159-162 (in Chinese).
0
Views
125
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution