浏览全部资源
扫码关注微信
1. 中国科学技术大学国家同步辐射实验室 合肥,230029
2. 包头稀土研究院,内蒙古 包头,014010
Received:19 May 2014,
Revised:24 July 2014,
Published:03 September 2014
移动端阅览
沈雷军, 李波, 王忠志等. YVO<sub>4</sub>:Tm<sup>3+</sup>的真空紫外发光性能[J]. 发光学报, 2014,35(9): 1034-1039
SHEN Lei-jun, LI Bo, WANG Zhong-zhi etc. Vacuum Ultraviolet Spectra of YVO<sub>4</sub>:Tm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(9): 1034-1039
沈雷军, 李波, 王忠志等. YVO<sub>4</sub>:Tm<sup>3+</sup>的真空紫外发光性能[J]. 发光学报, 2014,35(9): 1034-1039 DOI: 10.3788/fgxb20143509.1034.
SHEN Lei-jun, LI Bo, WANG Zhong-zhi etc. Vacuum Ultraviolet Spectra of YVO<sub>4</sub>:Tm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(9): 1034-1039 DOI: 10.3788/fgxb20143509.1034.
通过高温固相反应合成YVO
4
:
x
Tm(
x
=0.001,0.003,0.005,0.007,0.01,0.03,0.05)蓝色系列粉末状发光材料。经X射线衍射分析产物为单相,属四方锆英石结构,其结果与JCPDS标准卡(72-0861)相符。检测了材料的真空紫外激发光谱和发射光谱。YVO
4
:
x
Tm的真空紫外激发光谱在120~350 nm范围内为连续的带状峰,在155 nm和333 nm附近有明显的峰值。在155 nm激发下,YVO
4
:
x
Tm的发射光谱由两部分组成,其中主发射峰在474 nm附近呈一尖锐的线状,来自Tm
3+
的
1
G
4
3
H
6
跃迁;在650 nm左右有一弱发射峰,来自Tm
3+
的
1
G
4
3
H
4
跃迁。另外,还有一较弱的带状发射,中心位于540 nm左右,来自样品的VO
4
3-
离子的宽带发射。随着Tm
3+
摩尔分数
x
由0.001增加到0.005,Tm
3+
发射光谱强度逐渐增加到最大值。之后随着
x
继续增加,发射光谱强度逐渐下降,呈现明显的浓度猝灭现象。通过对YVO
4
:
x
Tm的光谱分析及其发光机理进行推导,认为YVO
4
:Tm
3+
在紫外及真空紫外激发下,是一种具有较高发光效率以及色纯度较好的蓝色发光材料。
Series of blue phosphors YVO
4
:
x
Tm (
x
=0.001
0.003
0.005
0.007
0.01
0.03
0.05) were synthesized by the high temperature solid state reaction in this paper. X-ray diffraction shows that the product is a tetragonal zircon structured single phase. The result is consistent with JCPDS standard card (72-0861). The vacuum UV excitation spectrum and emission spectra of the phosphors at room temperature were also detected. The vacuum UV excitation spectrum of YVO
4
:
x
Tm includes a continuous banded peak in the range of 120-350 nm
and there are two significant peaks at 155 nm and 333 nm. Excited by 155 nm
the emission spectrum of YVO
4
:
x
Tm consists of two parts. The main emission spectrum at 474 nm is a sharp peak
caused by
1
G
4
3
H
6
transition of Tm
3+
. The weaker emission peak is at 650 nm
which is generated by
1
G
4
3
H
4
transition of Tm
3+
. In addition
there is a weak band emission centering around 540 nm
which presents broadband emission of VO
4
3-
ions. With the increasing of Tm
3+
mole fraction (
x
) from 0.001 to 0.005
the emission intensity gradually increases to a maximum value. Then
as
x
increases continuously
the emission intensity decreases gradually
presents an obvious concentration quench. By analyzing the spectra of YVO
4
:
x
Tm and its luminescent mechanism
it can be derived that YVO
4
:Tm
3+
is a kind of blue phosphor material with high luminous efficiency and color purity under ultraviolet or vacuum ultraviolet excitation.
Jia Z G. The technology progress of stereoscopic display [J]. Optoelectron. Technol., 2001(12):267-271.
Dong Q Z, Wang Y H, Wang Z F, et al. Self-purification-dependent unique photo luminescence properties of YBO:Eu3+ nano phosphors under VUV excitation [J]. J. Phys. Chem. C, 2010, 114(20):9245-9250.
Pu Y, Zhu D C, Ma M X, et al. Co-precipitation synthesis and luminescence properties of (Y1-x-yGdy)2O3:xEu red phosphor [J]. Chin. J. Lumin.[HTK](发光学报), 2012, 33(3):247-252 (in Chinese).
Poot S H M, Reijnhoudt H M, Blasse G. Luminescnce of Eu2+ in silicate host lattices with alkaline earth ions in arrow [J]. J. Alloys Compd., 1996, 241(1-2):75-81.
Hong G Y, Zeng X Q. Luminescence materials for plasma display panel applications [J]. Funct. Mater.(功能材料), 1999, 30(3):225-227 ( in Chinese).
Zhou B, Yu X H, Huang J G. Mechanism of thermal degradation of blue emitting BAM phosphor [J]. Chin. J. Lumin.(发光学报), 2000, 21(4):345-348 ( in Chinese).
Zhang S X, Kono T, Ito A, et al. Degradation mechanisms of the blue-emitting phosphor BaMgAl10O17:Eu2+ under baking and VUV-irradiating treatments [J]. J. Lumin., 2004, 106(1):39-46.
Lai H S, Cheng B J, Xu W, et al. Photo luminescence of Y(P,V)O4:Tm3+ phosphor prepared by co-precipitation reaction [J]. Chin. J. Lumin.(发光学报), 2005, 26(2):205-210 (in Chinese).
Song F, Guo H C, Zhang W L, et al. Caculation of spectroscopic properties of Tm:YVO4 crystals [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2002, 22(1):1-4 (in Chinese)
Xu C, He J, Huang W G. Luminescence characteristic of Yb-doped GdVO4:Tm blue luminescent material [J]. Rare Metal Mater. Eng.(稀有金属与工程), 2009, 38(11):2057-2059 (in Chinese)
Riwotzki K, Haase M. Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln=Eu, Sm, Dy) [J]. Phys. Chem. B, 1998, 102:10129-10135.
Huignard A, Buissette V, Laurent G, et al. Synthesis and characterizations of YVO4:Eu colloids [J]. Chem. Mater., 2002, 14:2264-2269.
Minami T, Utsubo T, Miyata T, et al. PL and EL properties of Tm-activated vanadium oxide-based phosphor thin films [J]. Thin Solid Films, 2003, 445:377-381.
Zhang H, Fu X, Niu S, et al. Photoluminescence of YVO4:Tm phosphor prepared by a polymerizable complex method [J]. Solid State Commun., 2004, 132:527-531.
Su Q, Pei Z W, Chi L S, et al. The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission [J]. J. Alloys Compd., 1993, 192:25-27.
Shionoya S, William Y M. Phosphor Handbook [M]. Boca Raton: CRC Press, 1994:1009.
Hong G Y. Rare Earth Luminescent Material Basis and Application [M]. Beijing: Science Press, 2011:302.
Song F, Guo H C, Zhang W L, et al. Caculation of spectroscopic properties of Tm:YVO4 crystals [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2002, 22(1):1-4 (in Chinese).
Blasse G, Bril A. Fluorescence of Eu3+-activated garnets containing pentavalent vanadium [J]. J. Electorchem. Soc., 1967, 114(3):250-254.
0
Views
123
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution