浏览全部资源
扫码关注微信
上海大学 材料科学与工程学院 上海,200444
Received:26 May 2014,
Revised:15 June 2014,
Published:03 September 2014
移动端阅览
范灵聪, 张瑜瑜, 张园等. 多晶Lu<sub>2</sub>SiO<sub>5</sub>:Ce发光粉体中Ce价态的 XANES表征及其VUV光谱特性[J]. 发光学报, 2014,35(9): 1027-1033
FAN Ling-cong, ZHANG Yu-yu, ZHNAG Yuan etc. XANES Characterization of Ce Valence State in Polycrystalline Lu<sub>2</sub>SiO<sub>5</sub>:Ce Powders and Its VUV Spectroscopic Properties[J]. Chinese Journal of Luminescence, 2014,35(9): 1027-1033
范灵聪, 张瑜瑜, 张园等. 多晶Lu<sub>2</sub>SiO<sub>5</sub>:Ce发光粉体中Ce价态的 XANES表征及其VUV光谱特性[J]. 发光学报, 2014,35(9): 1027-1033 DOI: 10.3788/fgxb20143509.1027.
FAN Ling-cong, ZHANG Yu-yu, ZHNAG Yuan etc. XANES Characterization of Ce Valence State in Polycrystalline Lu<sub>2</sub>SiO<sub>5</sub>:Ce Powders and Its VUV Spectroscopic Properties[J]. Chinese Journal of Luminescence, 2014,35(9): 1027-1033 DOI: 10.3788/fgxb20143509.1027.
采用X射线吸收近边结构(XANES)谱对多晶Lu
2
SiO
5
:Ce(LSO:Ce)发光粉体中Ce元素的化合价状态进行了表征,结果表明:在空气下煅烧后得到的不同Ce掺杂浓度的LSO:Ce粉体中,Ce
3+
在总掺杂Ce中的含量仅为18%~39%;而经1 000 ℃/2 h的氢气气氛下退火后,LSO:0.5%Ce粉体中Ce
3+
的相对含量由39%大幅提高到83%。真空紫外(VUV)激发发射光谱表明:当Ce的掺杂摩尔分数为0.25%~1%时, Ce
3+
的摩尔分数与LSO:Ce粉体的发光强度具有很好的关联性。 氢气退火处理可以使LSO:Ce粉体的发光强度提高近40%。LSO:Ce粉体在变温条件(50~250 K)下的发射强度表现出良好的稳定性,未观察到热猝灭现象发生。
The valence state of Ce in the polycrystalline Lu
2
SiO
5
:Ce(LSO:Ce) luminescent powders was characterized by X-ray absorption near edge structure (XANES) spectra. The result demonstrates that Ce
3+
contents relative to Ce in the LSO:Ce powders with different Ce-doped concentration are only 18%~39%. Annealed at 1 000 ℃ for 2 h in a flowing hydrogen atmosphere
the relative Ce
3+
content of LSO:0.5%Ce powder increases significantly to 83% from 39%. The emission spectra excited by vacuum ultra violet (VUV) suggest that the luminescence intensity of LSO:Ce with Ce mole fraction from 0.25% to 1% is correlated closely with Ce
3+
content in the powders. The luminescence intensity of LSO:0.5%Ce increases about 40% by annealing in a flowing hydrogen atmosphere. The emission intensity is very stable at different temperatures (50~250 K) without thermal quenching effect observing.
Li B R, Yang Y, Yang Z W, et al. Synthesis conditions and electric properties of Lu2Ti2O7 thin films prepared by sol-gel technique [J]. Opt. Precision Eng.(光学 精密工程), 2013, 21(12):3050-3057 (in Chinese).
Wang X J, Zhou Z P. Research progress of Er silicate compound light source materials and devices for silicon photonics application [J]. Chin. Opt.(中国光学), 2014, 7(2):274-280 (in Chinese).
Melcher C L, Schmand M, Eriksson M, et al. Scintillation properties of LSO:Ce boules [J]. IEEE Trans. Nucl. Sci., 2000, 47(3):965-968.
Weber S, Christ D, Kurzeja M, et al. Comparison of LuYAP, LSO, and BGO as scintillators for high resolution PET detectors [J]. IEEE Trans. Nucl. Sci., 2003, 50(5):1370-1372.
Melcher C L, Friedrich S, Cramer S. Cerium oxidation state in LSO:Ce scintillators [J]. IEEE Trans. Nucl. Sci., 2005, 52(5):1809-1812.
Ding D, Feng H, Ren G, et al. Air atmosphere annealing effects on LSO:Ce crystal [J]. IEEE Trans. Nucl. Sci., 2010, 57(3):1272-1277.
Ma L D, Yang F J. Introduction to Synchrotron Radiation Application [M]. 2nd ed. Shanghai: Fudan University Press, 2005:149-154 (in Chinese) .
Xu Z B, Fan L C, Lin D B, et al. Synthesis of LSO:Ce3+ luminescent powders via Urea-assisted coprecipitation template method [J]. Acta Chim. Sinica (化学学报), 2011, 69(22):2729-2732 (in Chinese).
Zhang J, Ju X, Wu Z Y, et al. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion [J]. Chem. Mater., 2001, 13:4192-4197.
Takahashi Y, Sakami H, Nomura M. Determination of the oxidation state of cerium in rocks by Ce LⅢ-edge X-ray absorption near-edge structure spectroscopy [J]. Anal. Chim. Acta, 2002, 468:345-354.
Takahashi Y, Shimizu H, Usui A, et al. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES) [J]. Geochim. Cosmochim. Acta, 2000, 64(17):2929-2935.
Sykora R E, Deakin L, Mar A, et al. Isolation of intermediate-valent Ce(Ⅲ)/Ce(Ⅳ) hydrolysis products in the preparation of cerium iodates: Electronic and structural aspects of Ce2(IO3)6(OHx) (x0 and 0.44) [J]. Chem. Mater., 2004, 16:1343-1349.
Wu Z, Zhang J, Chen X, et al. XAFS Study on the local atomic structures of cerium-oxide [J]. Phys. Scr., 2005, T115:802-806.
Bianconi A, Marcelli A, Dexpert H, et al. Specific intermediate-valence state of insulating 4f compounds detected by L3 X-ray absorption [J]. Phys. Rev. B, 1987, 35(2):806-812.
Xu G Q, Zheng Z X, Tang W M, et al. Effect of heat treating ambience on luminescent properties of cerium doped silica [J]. Trans. Mater. Heat Treat.(材料热处理学报), 2007, 28(3):35-38 (in Chinese).
Liu Q Z, Liu Y F, Zhang D K, et al. Luminescence and thermal properties of Ce3+, Mn2+ codoped Ba9(Y2-xScx)-(SiO4)6 phosphors [J]. Chin. J. Lumin.(发光学报), 2013, 34(11):1440-1445 (in Chinese).
Drozdowski W, Wojtowicz A J, Wi?niewski D, et al. VUV spectroscopy and low temperature thermoluminescence of LSO: Ce and YSO:Ce [J]. J. Alloys Compd., 2004, 380(1-2):146-150.
Suzuki H, Tombrello T A, Melcher C L, et al. Light emission mechanism of Lu2(SiO4)O:Ce [J]. IEEE Trans. Nucl. Sci., 1993, 40(4):380-383.
Shen S Q, Xu Z B, Ma Q, et al. Sol-gel synthesis and luminescence properties of Ce:LSO polycrystalline films [J]. Chin. J. Lumin.(发光学报), 2011, 32(9):880-884 (in Chinese).
Gustafsson T, Klintenberg M, Derenzo S E, et al. Lu2SiO5 by single-crystal X-ray and neutron diffraction [J]. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2001, 57:668-669.
Cooke D W, Bennett B L, McClellan K J, et al. Electron-lattice coupling parameters and oscillator strengths of cerium-doped lutetium oxyorthosilicate [J]. Phys. Rev. B, 2000, 61(18):11973-11978.
Liu B, Shi C, Yin M, et al. Luminescence and energy transfer processes in Lu2SiO5:Ce3+ scintillator [J]. J. Lumin., 2006, 117(2):129-134.
0
Views
503
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution