CHENG Hao, HOU Yan-bing, QIN Liang etc. Amplified Spontaneous Emission from The Blend Films of F8BT and P3HT[J]. Chinese Journal of Luminescence, 2014,35(8): 1003-1008
CHENG Hao, HOU Yan-bing, QIN Liang etc. Amplified Spontaneous Emission from The Blend Films of F8BT and P3HT[J]. Chinese Journal of Luminescence, 2014,35(8): 1003-1008 DOI: 10.3788/fgxb20143508.1003.
Amplified Spontaneous Emission from The Blend Films of F8BT and P3HT
研究了聚合物poly(9,9-dioctylfluorene-co-benzothiadiazole)(F8BT)和poly (3-hexylthiophene)(P3HT)共混薄膜的放大自发辐射(ASE)现象,对影响其阈值的两个因素增益和损耗进行了详细的研究。结果显示,共混聚合物的发光效率随着P3HT所占比例的增加有所降低。当P3HT比例低于20%时,发光效率降低不多,而其损耗则随着P3HT的增加显著减小。F8BT和P3HT混合后,光损耗系数从7.8 cm
The amplified spontaneous emission (ASE) of the blend waveguide based on poly (9
9-dioctylfluorene-co-benzothiadiazole) (F8BT) and poly (3-hexylthiophene) (P3HT) was studied
and the gain and loss of the blend waveguides were discussed in detail. The photoluminescence quantum efficiency (PLQE) of F8BT:P3HT blend decreases with the increasing of P3HT fraction. When the P3HT fraction is less than 20%
PLQE of blends decreases slightly. Meanwhile
the loss coefficient decreases from 7.8 cm
-1
for F8BT waveguide to 4 cm
-1
for the waveguide based on the blend of F8BT and P3HT. So the decrease of ASE threshold of blend waveguides is resulted from the reduction of loss of the blend film waveguides. The decrease of ASE threshold would be benefit to the realization of electrically driven laser in waveguide based on the blend of F8BT and P3HT.
关键词
Keywords
references
Hide F, Diaz-Garcia M A, Schwartz B J, et al. Semiconducting polymers: A new class of solid-state laser materials [J]. Science, 1996, 273(5283):1833-1836.
Ma H, Jiang L L, Li M, et al. Research progress of liquid crystal material applied in organic photovoltaic devices [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2013, 28(5):653-660 (in Chinese).
Li G, Zhu R, Yang Y. Polymer solar cells [J]. Nat. Photon., 2012, 6(3):153-161.
Liu H, Yu T, Qu Y, et al. Contact resistance of electrode in tips-pentacene OTFT [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2013, 28(2):210-214 (in Chinese).
Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428):234-238.
Yang C H, Tang A W, Teng F. Chemistry of diazafluorene derivatives and their applications in organic optoelectronic device [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2013, 28(2):179-187 (in Chinese).
McGehee M D, Heeger A J. Semiconducting (conjugated) polymers as materials for solid-state lasers [J]. Adv. Mater., 2000, 12(22):1655-1668.
Holzer W, Penzkofer A, Gong S H, et al. Laser action in poly (m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) [J]. Adv. Mater., 1996, 8(12):974-978.
Samuel I, Turnbull G. Organic semiconductor lasers [J]. Chem. Rev., 2007, 107(4):1272-1295.
Tessler N, Denton G, Friend R. Lasing from conjugated-polymer microcavities [J]. Nature, 1996, 382(6593):695-697.
Kallinger C, Hilmer M, Haugeneder A, et al. A flexible conjugated polymer laser [J]. Adv. Mater., 1998, 10(12): 920-923.
Moses D. High quantum efficiency luminescence from a conducting polymer in solution: A novel polymer laser dye [J]. Appl. Phys. Lett., 1992, 60(26):3215-3216.
Yang Y, Turnbull G, Samuel I. Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode [J]. Appl. Phys. Lett., 2008, 92(16):163306-1-3.
Li Y T, Tian Y B, Liu X Y. Key techniques in electrically pumped organic semiconductor laser [J]. Chin. J. Lumin.(发光学报), 2009, 30(3):414-416 (in Chinese).
Kna-Cohen S, Forrest S. Room-temperature polariton lasing in an organic single-crystal microcavity [J]. Nat. Photon., 2010, 4(6):371-375.
Zhai T, Zhang X, Pang Z, et al. Direct writing of polymer lasers using interference ablation [J]. Adv. Mater., 2011, 23(16):1860-1864.
Xia R, Heliotis G, Hou Y, et al. Fluorene-based conjugated polymer optical gain media [J]. Org. Electron., 2003, 4(2):165-177.
Xia R, Heliotis G, Bradley D D C. Fluorene-based polymer gain media for solid-state laser emission across the full visible spectrum [J]. Appl. Phys. Lett., 2003, 82(21):3599-3601.
Heliotis G, Bradley D D C, Goossens M, et al. Operating characteristics of a traveling-wave semiconducting polymer optical amplifier [J]. Appl. Phys. Lett., 2004, 85(25):6122-6124.
Xia R, Stavrinou P N, Bradley D D C, et al. Efficient optical gain media comprising binary blends of poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole) [J]. J. Appl. Phys., 2012, 111(12):123107-1-8.
Kim Y, Bradley D D C. Bright red emission from single layer polymer light-emitting devices based on blends of regioregular P3HT and F8BT [J]. Curr. Appl. Phys., 2005, 5(3):222-226.
Temperature Dependence of Amplified Spontaneous Emission from Blend Film of F8BT and P3HT
1 μm High Power Superluminescent Diodes
Realization of UVB Lasing in High Quality Cubic ZnMgO Films
Amplified Spontaneous Emission from MEH-PPV Polymer Films
Theoretical Analysis on Threshold of QW Semiconductor Lasers
Related Author
WANG Wei-qian
LIN Tao
BO Baoxue
SU Peng
ZHANG Yue
ZHAO Renze
GAO Xin
FU Dingyang
Related Institution
Key Laboratory of Luminescence and Optical Information, Ministry of Education,Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University
Institute of Optoelectronic Technology, Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education
National Key Laboratory of High Power Semiconductor Lasers