浏览全部资源
扫码关注微信
1. 山东大学(威海)空间科学与物理学院,山东 威海,264209
2. 山东大学(威海)机电与信息工程学院,山东 威海,264209
Received:09 April 2014,
Revised:25 May 2014,
Published:03 August 2014
移动端阅览
翟剑波, 黄海北, 李素梅等. 基于量子限制的受主带间跃迁太赫兹探测器的制备与测量[J]. 发光学报, 2014,35(8): 986-991
ZHAI Jian-bo, HUANG Hai-bei, LI Su-mei etc. Preparation and Measurement of Terahertz Photodetectors Based on Quantum-confined Acceptor Transitions[J]. Chinese Journal of Luminescence, 2014,35(8): 986-991
翟剑波, 黄海北, 李素梅等. 基于量子限制的受主带间跃迁太赫兹探测器的制备与测量[J]. 发光学报, 2014,35(8): 986-991 DOI: 10.3788/fgxb20143508.0986.
ZHAI Jian-bo, HUANG Hai-bei, LI Su-mei etc. Preparation and Measurement of Terahertz Photodetectors Based on Quantum-confined Acceptor Transitions[J]. Chinese Journal of Luminescence, 2014,35(8): 986-991 DOI: 10.3788/fgxb20143508.0986.
使用分子束外延生长设备,在GaAs(100)衬底上生长了量子阱宽度为3 nm的GaAs/AlAs多量子阱样品,并在量子阱层中央进行了Be受主的-掺杂。根据量子限制受主从束缚态到非束缚态之间的跃迁,设计并制备了-掺杂Be受主GaAs/AlAs多量子阱太赫兹光探测器原型器件。在4.2 K温度下,分别对器件进行了太赫兹光电流谱和暗电流-电压曲线的测量。在6 V直流偏压下,空穴载流子沿量子阱层方向输运。当正入射激光频率为6.8 THz时,器件响应率为210
-4
V/W(2 A/W)。通过器件的暗电流-电压曲线计算了器件全散粒噪声电流,在4.2 K、6 V直流偏压下,全散粒噪声电流为5.03 fAHz
-1/2
。
3 nm well-width GaAs/AlAs multiple-quantum wells were grown by molecular beam epitaxy with Be acceptors -doped at quantum-well center on a semi-insulating GaAs (100) substrate. According to the transitions from bound to unbound states of quantum-confined acceptors
the terahertz prototype photodetector based Be acceptors-doped GaAs/AlAs multiple-quantum wells was designed and fabricated. The terahertz photocurrent spectrum and dark current-voltage characteristics of the device were measured at 4.2 K
respectively. Under a bias of 6 V and the normal incidence of a 6.8 THz laser
the hole carriers transport along quantum well layers
and the photodetector responsivity is 210
-4
V/W (2 A/W). According to the
I-V
curves measured at 4.2 K
the device full-shot noise current was calculated. It is 5.03 fAHz
-1/2
with a bias of 6 V.
Guo X G, Gu L L, Dong M, et al. Negative differential resistance induced by thermalization of two-dimensional electrons in terahertz quantum-well photodetectors [J]. J. Appl. Phys., 2013, 113(20):203109-1-4.
Ferr S, Razavipour S G, Ban D. Terahertz quantum well photodetectors with improved designs by exploiting many-body effects [J]. Appl. Phys. Lett., 2013, 103(8):081105-1-4.
Kajihara Y, Nakajima T, Wang Z, et al. Terahertz single-photon detectors based on quantum wells [J]. J. Appl. Phys., 2013, 113(13):136506-1-5.
Sudradjat F F, Zhang W, Woodward J, et al. Far-infrared intersubband photodetectors based on double-step Ⅲ-nitride quantum wells [J]. Appl. Phys. Lett., 2013, 100(24):241113-1-4.
Liu J, Zheng W M, Song Y X, et al. Preparation and measurement of far-infrared electroluminescence emitter based on quantum confined acceptors [J]. Acta Phys. Sinica (物理学报), 2010, 59(4):2728-2733 (in Chinese).
Zheng W M, Lu Y B, Song S M, et al. Photoluminescence study of the acceptor binding energy in GaAs/AlAs quantum wells [J]. Chin. J. Lumin.(发光学报), 2008, 29(1):156-160 (in Chinese).
Seliuta D, Kavaliauskas J, ?echavi ? ius B, et al. Impurity bound-to-unbound terahertz sensors based on beryllium and silicon -doped GaAs/AlAs multiple quantum wells [J]. Appl. Phys. Lett., 2008, 92(5):053503-1-3.
Liu H C. Photoconductive gain mechanism of quantum-well intersubband infrared detectors [J]. Appl. Phys. Lett., 1992, 60(6):1507-1509.
Levine B F. Quantum-well infrared photodetectors [J]. J. Appl. Phys., 1993, 74(15):R1-R81.
Goldberg A, Choi K K, Cho E, et al. Laboratory and field performance of megapixel QWIP focal plane arrays [J]. Infrared Phys. Technol., 2005, 47(1-2):91-105.
Cao J C. Terahertz semiconductor detector [J]. Physics (物理), 2006, 35(11):953-956 (in Chinese).
Graf M, Scalari G, Hofstetter D, et al. Terahertz range quantum well infrared photodetector [J]. Appl. Phys. Lett., 2004, 84(4):475-477.
Liu H C, Song C Y, SpringThorpe A J, et al. Terahertz quantum-well photodetector [J]. Appl. Phys. Lett., 2004, 84(20):4068-4070.
Ting D Z Y, Chang Y C, Bandara S V, et al. Quantum well intrasubband photodetector for far infrared and terahertz radiation detection [J]. Appl. Phys. Lett., 2007, 91(7):073510-1-3.
Masselink W T, Chang Y C, Morkoc H. Acceptor spectra of AlxGa1-xAs-GaAs quantum wells in external fields: Electric, magnetic, and uniaxial stress [J]. Phys. Rev. B, 1985, 32(8):5190-5200.
Reeder A A, McCombe B D, Chambers F A, et al. Far-infrared study of confinement effects on acceptors in GaAs/AlxGa1-xAs quantum wells [J]. Phys. Rev. B, 1988, 38(6):4318-4321.
Zheng W M, Halsall M P, Harmer P, et al. Effect of quantum confinement on shallow acceptor transitions in -doped GaAs/AlAs multiple-quantum wells [J]. Appl. Phys. Lett., 2004, 84(5):735-737.
Zheng W M, Halsall M P, Harmer P, et al. Acceptor binding energy in -doped GaAs/AlAs multiple-quantum wells [J]. J. Appl. Phys., 2002, 92(10):6039-6042.
Zheng W M, Halsall M P, Harmer P, et al. Far-infrared absorption studies of Be acceptors in -doped GaAs/AlAs multiple quantum wells [J]. Sci. China Ser. G, 2006, 49(6):702-708.
Kirkman R F, Stradling R A, Lin-Chung P J. An infrared study of the shallow acceptor states in GaAs [J]. J. Phys. C, 1978, 11(2):419-433.
Zussman A, Levine B F, Kuo J M, et al. Extended long-wavelength =11-15-m GaAs/AlxGa1-xAs quantum-well infrared photodetectors [J]. J. Appl. Phys., 1991, 70(9):5101-5107.
Janousek B K, Daugherty M J, Bloss W L, et al. High-detectivity GaAs quantum well infrared detectors with peak responsivity at 8.2 m [J]. J. Appl. Phys., 1990, 67(12):7608-7611.
0
Views
160
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution