HE Lei, LI Run-hua, ZHOU Ling etc. Spectral Down-conversion of Dye-doped Polymer Films[J]. Chinese Journal of Luminescence, 2014,35(8): 917-921 DOI: 10.3788/fgxb20143508.0917.
Spectral Down-conversion of Dye-doped Polymer Films
Coumarin 540 and Rhodamine 6G dyes were fabricated on glass. The absorption spectra
fluorescence spectra and down-conversion characteristics of these films were experimentally studied using LED and xenon lamps as illumination sources. The photons from 350 nm to 550 nm can be down-converted to photons of 580 nm by these dye-doped polymer films. Higher dopant concentrations within certain range
more photons can be down-converted. Since Nd
3+
in Nd
3+
/Yb
3+
co-doped glass has a strong absorption band around 580 nm
these dye-doped polymer films are helpful to enhance absorption of blue and green light and convert them to near infrared emission of Yb
3+
through resonance energy transfer. These films can be potentially used to improve the compositive photovoltaic conversion efficiency of crystalline silicon solar cells.
关键词
Keywords
references
Swartz B A, Cole T, Zewail A H. Photon trapping and energy transfer in multiple-dye plastic matrices: An efficient solar-energy concentrator [J]. Opt. Lett., 1977, 1(2):73-75.
Goetzberger A, Greubel W. Solar energy conversion with fluorescent collectors [J]. Appl. Phys., 1977, 14(2):123-139.
Grandet M, Moss G, Milwardi S, et al. The application of thin film wavelength-shifting coatings of perspex to solar energy collection [J]. J. Phys. D: Appl. Phys., 1983, 16(12):2525-2535.
Reisfeld R, Jrgensen C K. Structure and Bonding 49 [M]. Berlin: Springer-Verlag, 1982.
Huang X Y, Han S Y, Huang W, et al. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters [J]. Chem. Soc. Rev., 2013, 42(1):173-201.
Brenda C, Rowan B C, Wilson L R, et al. Advanced material concepts for luminescent solar concentrators [J]. IEEE J. Sel. Top. Quant. Electron., 2008, 14(5):1312-1322.
Wittmershaus B P, Bailey S T, Lokey G E, et al. Optimized excitation energy transfer in a three-dye luminescent solar concentrator [J]. Sol. Energy Mater. Sol. Cells, 2007, 91(1):67-75.
Dienel T, Bauer C, Dolamic I, et al. Spectral-based analysis of thin film luminescent solar concentrators [J]. Sol. Energy, 2010, 84(8):1366-1369.
Balaban B, Doshay S, Osborn M, et al. The role of FRET in solar concentrator efficiency and color tenability [J]. J. Lumin., 2014, 146:256-262.
Hu W J, Zhang Y, Jian X, et al. Study of PbSe quantum dots for use in luminescence solar concentrators [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2013, 33(2):409-413 (in Chinese).
Reisfeld R, Kalisky Y. Nd3+ and Yb3+ germanate and tellurite glasses for fluorescent solar energy collectors [J]. Chem. Phys. Lett., 1981, 80(1):178-183.
Zhou J J, Teng Y, Ye S, et al. Research progress on broadband down-conversion spectral modification based on energy transferring of rare earth ions [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2011, 39(4):619-623 (in Chinese).
Sontakke A D, Biswas K, Sen R, et al. Efficient non-resonant energy transfer in Nd3+-Yb3+ codoped Ba-Al-metaphosphate glasses [J]. J. Opt. Soc. Am. B, 2010, 27(12):2750-2758.
Batalioto F, De Sousa D F, Bell M J V, et al. Optical measurements of Nd3+/Yb3+ codoped fluoroindogallate glasses [J]. J. Non-Cryst. Solids, 2000, 273(1-3):233-238.
Roberts D V, Wittmershaus B P, Zhang Y Z, et al. Efficient excitation energy transfer among multiple dyes in polystyrene microspheres [J]. J. Lumin., 1998, 79:225-231.
Zhan Y B, Lei H, Mo J Y, et al. Fluorescence and spectral down-conversion characterization of dye-doped polymer fibers [J]. Chin. J. Lumin.(发光学报), 2014, 35(3):269-275 (in Chinese).
Friedman P S. Luminescent solar concentrators [J]. Opt. Eng., 1981, 20(6):887-892.
Reisfeld R, Shamrakov D, Jorgensen C. Photostable solar concentrators based on fluorescent glass films [J]. Sol. Energy Mater. Sol. Cells, 1994, 33(4):417-427.