ZHANG Xin-yang, SUN Shang-qian, YAN Duan-ting etc. Synthesis and Photoluminescence Characteristics of 12CaO&middot;7Al<sub>2</sub>O<sub>3</sub>/5CaO&middot;3Al<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup> Red Phosphors[J]. Chinese Journal of Luminescence, 2014,35(8): 911-916
ZHANG Xin-yang, SUN Shang-qian, YAN Duan-ting etc. Synthesis and Photoluminescence Characteristics of 12CaO&middot;7Al<sub>2</sub>O<sub>3</sub>/5CaO&middot;3Al<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup> Red Phosphors[J]. Chinese Journal of Luminescence, 2014,35(8): 911-916 DOI: 10.3788/fgxb20143508.0911.
Synthesis and Photoluminescence Characteristics of 12CaO·7Al2O3/5CaO·3Al2O3:Sm3+ Red Phosphors
doping concentrations were synthesized through self-propagating combustion method. Under 404 nm UV excitation
there are three dominating emission peaks observed at 565
599 and 648 nm
corresponding to the
4
G
5/2
6
H
J
/2
(
J
=5
7
9) transitions of Sm
3+
respectively. With the increasing of Sm
3+
doping concentration
the red emitting intensity exhibited a behavior that increased firstly and then decreased. The optimal Sm
3+
ion concentration is 1.5% and the concentration quenching effect is due to the cross-relaxation (CR) processes between the Sm
3+
ions. Through adopting mixed-phase strategy
12CaO 7Al
2
O
3
/5CaO3Al
2
O
3
:1.5%Sm
3+
(C12A7/C5A3:Sm
3+
) powders were prepared by decreasing the calcining temperature to 900℃ and the enhanced red emitting intensity was obtained. The temperature-dependent photoluminescence showed that the thermal activation energy of the mixed-phase sample is about 200 meV and its thermal stability is high.
关键词
Keywords
references
Zhang Q, Wang C F, Ling L T, et al. Fluorescent nanomaterial-derived white light emitting diodes: What's going on [J]. J. Mater. Chem. C, 2014, 2:4358-4373.
Xiao H, Lu Y J, Xu Y X, et al. The difference of luminous performance between traditional phosphor packaging LED and remote phosphor LED [J]. Chin. J. Lumin.(发光学报), 2014, 35(1):66-72 (in Chinese).
Tonzani S. Lighting technology: Time to change the bulb [J]. Nature, 2009, 459(7245):312-314.
Krames M R, Shchekin O B, Mueller-Mach R, et al. Status and future of high power light-emitting diodes for solid-state lighting [J]. J. Disp. Technol., 2007, 3(2):160-175.
Setlur A A, Heward W J, Gao Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2 (Si,Ge)3O12 and its use in LED based lighting [J]. Chem. Mater., 2006, 18(14):3314-3322.
Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+(M=Ba,Sr,Ca) phosphors for light-emitting diode [J]. Solid State Commun., 2005, 133(3):187-190.
Li Y Q, Steen J E J, Krevel J W H, et al. Luminescence properties of red emitting M2Si5N8:Eu3+(M=Ca,Sr,Ba) LED conversion phosphors [J]. J. Alloys Compd., 2006, 417(1-2):273-277.
Yang Y, Chen Y J, Xiao L J, et al. Synthesis and luminescent properties of Sr3B2O6:Eu3+,Li+ phosphor [J]. Chin. J. Lumin.(发光学报), 2014, 35(3):317-321 (in Chinese).
Grller-Walrand C, Binnemans K. Handbook on The Physics and Chemistry of Rare Earths [M]. Amsterdam: Elsevier, 1996:252-261.
Liu Y X, Ma L, Yan D T, et al. Effects of encaged anions on the optical and EPR spectroscopies of RE doped C12A7 [J]. J. Lumin., 2014,152:28-32.
Bian H Y, Liu Y X, Yan D T, et al. Spectral modulation through controlling anions in nanocaged phosphors [J]. J. Mater. Chem. C, 2013, 1(47):7896-7903.
Liu X L, Liu Y X, Yan D T, et al. Single-phased white-emitting 12CaO7Al2O3:Ce3+,Dy3+ phosphors with suitable electrical conductivity for field emission displays [J]. J. Mater. Chem., 2012, 22(33):16839-16843.
Ruszak M, Witkowski S, Pietrzyk P, et al. The role of intermediate calcium aluminate phases in solid state synthesis of mayenite (Ca12Al14O33) [J]. Funct. Mater. Lett., 2011, 4(2):183-186.
Raab B, Poellmann H. Heat flow calorimetry and SEM investigations to characterize the hydration at different temperatures of different 12CaO7Al2O3 (C12A7) samples synthesized by solid state reaction polymer precursor process and glycine nitrate process [J]. Thermochim. Acta, 2011, 513(1-2):106-111.
Suhasini T, Kumar J S, Sasikala T, et al. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses [J]. Opt. Mater., 2009, 31:1167-1172.
Li J, Hayashi K, Hirano M, et al. Field-assisted sustainable O- ion emission from fluorine-substituted 12CaO7Al2O3 with improved thermal stability [J]. Solid State Ionics, 2009, 180(17-19):1113-1117.
Wang B, Hui L S, Xue Z Z, et al. Effect of synthesis time on microscopic characteristics of 12CaO7Al2O3 [J]. Adv. Mater. Res., 2012, 560:263-266.
Li J, Yin B, Fuchigami T, et al. Application of 12CaO7Al2O3 electride as a new electrode for superoxide ion generation and hydroxylation of an arylboronic acid [J]. Electrochem. Commun., 2012, 17:52-55.
Gong L, Zhou L, Shen N, et al. Synthesis and characteristics of the C12A7-O- nanoparticles by citric acid sol-gel combustion method [J]. Mater. Lett., 2010, 64(11):1322-1324.
Figueiredo V, Longo V, De L S, et al. Blue-green and red photoluminescence in CaTiO3:Sm [J]. J. Lumin., 2007, 126(2):403-407.
Li J L, Deng C Y, Cui R R. Photoluminescence properties of CaBi2Ta2O9:RE3+ (RE=Sm, Tb, and Tm) phosphors [J]. Opt. Commun., 2014, 326:6-9.
Shivaram M, Nagabhushana H, Sharma S C, et al. Synthesis and luminescence properties of Sm3+ doped CaTiO3 nanophosphor for application in white LED under NUV excitation [J]. Spectrochim. Acta, Part A, 2014, 128:891-901.
Lei B F, Liu Y L, Tang G, et al. Spectra and long-lasting properties of Sm3+-doped yttrium oxysulfide phosphor [J]. Mater. Chem. Phys., 2004, 87(1):227-232.
Luis P, Angeles G, Sebastian B, et al. Crystal structures and in-situ formation study of mayenite electrides [J]. Inorg. Chem., 2007, 46(10):4167-4176.
Da ? anin L R, Luki?-Petrovi? S R, Petrovi? D M, et al. Temperature quenching of luminescence emission in Eu3+-and Sm3+-doped YNbO4 powders [J]. J. Lumin., 2014, 151:82-87.