LI Xiang-ping, TONG Li-li, CHENG Li-hong etc. Effect of Tm<sup>3+</sup> Concentration on Upconversion Fluorescence in Y<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>:Tm<sup>3+</sup>, Yb<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(8): 905-910
LI Xiang-ping, TONG Li-li, CHENG Li-hong etc. Effect of Tm<sup>3+</sup> Concentration on Upconversion Fluorescence in Y<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>:Tm<sup>3+</sup>, Yb<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(8): 905-910 DOI: 10.3788/fgxb20143508.0905.
Effect of Tm3+ Concentration on Upconversion Fluorescence in Y2(MoO4)3:Tm3+, Yb3+ Phosphors
a traditional high temperature solid state reaction method using NH
4
HF
2
as a flux. The microstructure analysis by means of X-ray diffraction revealed that the as-synthesized samples presented a pure phase Y
2
(MoO
4
)
3
. Under 980 nm excitation
intense blue
near infrared (NIR) and weak red upconversion emissions which centered at 487
800 and 649 nm were observed
and these emissions were corresponding to the
1
G
4
3
H
6
3
H
4
3
H
6
and
1
G
4
3
F
4
transitions of Tm
3+
respectively. The upconversion luminescence mechanisms of Y
2
(MoO
4
)
3
:Tm
3+
Yb
3+
phosphors were analyzed based upon the power dependent upconversion emissions. The results show that the populations of
1
G
4
and
3
H
4
levels come from three-and two-photon energy transfer upconversion processes
respectively. The possible upconversion mechanisms for the blue
red and NIR emissions were discussed based on the energy level diagrams of Tm
3+
and Yb
3+
. In addition
with the increase of Tm
3+
concentration
all of the emission bands obviously increase firstly and then decrease
which can be attributed to the concentration quenching. Meanwhile
the intensity ratio of the blue emission and the NIR emission decreases with the increase of Tm
3+
concentration.
关键词
Keywords
references
Rao R P. Tm3+ activated lanthanum phosphate: A blue PDP phosphor [J]. J. Lumin., 2005, 113(3-4):271-278.
Higuchi M, Shimizu T, Takahashi J, et al. Growth of RE:LuVO4 (RE=Nd, Tm, Yb) single crystals by the floating zone method and their spectroscopic properties [J]. J. Cryst. Growth, 2005, 283(1-2):100-107.
Wang F, Deng R R, Wang J, et al. Tuning upconversion through energy migration in core-shell nanoparticles [J]. Nat. Mater., 2011, 10(12):968-973.
Kuningas K, Rantanen T, Karhunen U, et al. Simultaneous use of time-resolved fluorescence and anti-Stokes photoluminescence in a bioaffinity assay [J]. Anal. Chem., 2005, 77(9):2826-2834.
Soukka T, Kuningas K, Rantanen T, et al. Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels [J]. J. Fluoresc., 2005, 15(4):513-528.
Jiang Y F, Shen R S, Li X P, et al. Concentration effects on the upconversion luminescence in Ho3+/Yb3+ co-doped NaGdTiO4 phosphor [J]. Ceram. Int., 2012, 38(6): 5045-5051.
Song Y, Ding M Y, Huang W J, et al. Synthesis and optical properties of transparent -NaYF4:Yb,Tm/PMMA nanocomposites [J]. Chin. J. Lumin.[HTK](发光学报), 2014, 35(3):293-299 (in Chinese).
Lu W L, Cheng L H, Zhong H Y, et al. Dependence of upconversion emission intensity on Yb3+ concentration in Er3+/Yb3+ co-doped flake shaped Y2(MoO4)3 phosphors [J]. J. Phys. D: Appl. Phys., 2010, 43(8):085404-1-5.
De G J H. Upconversion luminescence properties of YF3:Yb3+,Er3+ nanoclusters [J]. J. Nanosci. Nanotechnol., 2011, 11(11):9980-9983.
He C, Yang K S, Liu L, et al. Preparation and luminescence properties of BaWO4:Yb3+/Tm3+ nano-crystal [J]. J. Rare Earth (稀土学报), 2013, 31(8):790-794 (in Chinese).
An L Q, Zhang J, Liu M, et al. Upconversion luminescence of Tm3+ and Yb3+-codoped lutetium oxide nanopowders [J]. J. Alloys Compd., 2008, 451(1-2):538-541.
Du H Y, Wei Z P, Sun L J, et al. Luminescent properties of ZnS:Mn nanoparticles dependent on doping concentration [J]. Chin. Opt.(中国光学), 2013, 6(1):111-116 (in Chinese).
Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+/Er3+-codoped oxyfluoride glass ceramics [J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese).
Yu F D, Chen H, Zhao D, et al. Multicolor upconversion luminescence from core-shell structured nanoparticles [J]. Chin. J. Lumin.(发光学报), 2014, 35(2):165-171 (in Chinese).
Aleksandrovsky A S, Gudim I A, Krylov A S, et al. Upconversion luminescence of YAl3(BO3)4:(Yb3+, Tm3+) crystals [J]. J. Alloys Compd., 2010, 496(1-2):L18-L21.
Yang Y M, Zhang J, Su X Y, et al. Synthesis and characterization of up-conversion luminescence material Er3+/Yb3+ co-doped BaGd2O4 [J]. Chin. J. Lumin.(发光学报), 2013, 34(12):1585-1590 (in Chinese).
Yang Y M, Mi C, Liu L L, et al. Dyanmic process of green upconversion emission from Ho3+ under square wave excitation [J]. Chin. J. Lumin.(发光学报), 2013, 34(7):866-871 (in Chinese).
Lu W L, Cheng L H, Sun J S, et al. The concentration effect of upconversion luminescence properties in Er3+/Yb3+-codoped Y2(MoO4)3 phosphors [J]. Phys. B: Conden. Matter, 2010, 405(16):3284-3288.
Gouveia-Neto A S, Bueno L A, Nascimento R F, et al. White light generation by frequency upconversion in Tm3+/Ho3+ /Yb3+-codoped fluorolead germanate glass [J]. Appl. Phys. Lett., 2007, 91(9):091114-1-3.
Zeng S J, Ren G Z, Xu C F. Intense blue photoluminescence of the Tm3+/Yb3+ co-doped single-crystalline hexagonal phase NaYF4 nanorods [J]. J. Alloys Compd., 2011, 509(5):2540-2543.
Xu S Q, Sun H T, Dai S X, et al. Upconversion luminescence of Tm3+/Yb3+-codoped oxyhalide tellurite glasses [J]. Solid State Commun., 2005, 133(2):89-92.