浏览全部资源
扫码关注微信
1. 华南师范大学 光电子材料与技术研究所,广东 广州,510631
2. 华南师范大学 广东省微纳光子功能材料与器件重点实验室,广东 广州,510006
Received:18 February 2014,
Revised:20 March 2014,
Published Online:09 May 2014,
Published:03 July 2014
移动端阅览
朱凝, 张辉, 李浩. 基于一种易于制作的混合型表面等离激元波导结构的超紧凑截线滤波器[J]. 发光学报, 2014,35(7): 883-888
ZHU Ning, ZHANG Hui, LI Hao. Ultra-compact Stub-type Wavelength Filter Based on Hybrid Plasmonic Waveguide Structure Improved for Fabrication[J]. Chinese Journal of Luminescence, 2014,35(7): 883-888
朱凝, 张辉, 李浩. 基于一种易于制作的混合型表面等离激元波导结构的超紧凑截线滤波器[J]. 发光学报, 2014,35(7): 883-888 DOI: 10.3788/fgxb20143507.0883.
ZHU Ning, ZHANG Hui, LI Hao. Ultra-compact Stub-type Wavelength Filter Based on Hybrid Plasmonic Waveguide Structure Improved for Fabrication[J]. Chinese Journal of Luminescence, 2014,35(7): 883-888 DOI: 10.3788/fgxb20143507.0883.
提出并分析了一种结构紧凑的截线型滤波器。该滤波器建立在一种硅基混合型表面等离激元波导结构上。与通常的混合等离激元结构相比,该波导结构在制作时只需对顶部的一层硅材料进行刻蚀,不需在光刻步骤进行对准和套刻,工艺简单易行。该截线滤波器由一截突柱波导与直波导耦合组成,并采用三维时域有限差分方法对其频谱响应进行模拟计算。计算结果表明该滤波器与现有文献中的二维金属-绝缘体-金属波导截线滤波器具有类似的频谱特性。另外,还进一步分析了截线部分及波导自身尺寸对器件输出频谱的影响。
An ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguide is proposed and simulated. The present hybrid plasmonic structure needs only one layer to be patterned and is favorable for fabrication. The light is confined strongly in a thin silica dioxide layer between the metal substrate and silicon top layer. The filter consists of a stub structure coupled to a straight waveguide. The output spectra calculated by the 3D FDTD method are similar as those devices based on the 2D metal-insulator-metal waveguide structure in the previous literatures. In addition
the effects of the dimensions of the stub and waveguide structure on the device's performance are analyzed.
Charbonneau R, Lahoud N, Mattiussi G, et al. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons [J]. Opt. Exp., 2005, 13(3):977-984.
Holmgaard T, Chen Z, Bozhevolnyi S I, et al. Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides [J]. Opt. Exp., 2008, 16(18):13585-13592.
Veronis G, Fan S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides [J]. Appl. Phys. Lett., 2005, 87(13):131102-1-3.
Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon [J]. Opt. Lett., 2006, 31(14):2133-2135.
Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J]. Nature, 2006, 440:508-511.
Volkov V S, Bozhevolnyi S I, Devaux E, et al. Compact gradual bends for channel plasmon polaritons [J]. Opt. Exp., 2006, 14(10):4494-4503.
Oulton R F, Sorger V J, Genov D A, et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J]. Nat. Photon., 2008, 2:496-500.
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J]. Opt. Exp., 2009, 17(19):16646-16653.
Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale [J]. Opt. Exp., 2010, 18(11):11728-11736.
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides [J]. IEEE Photon. Technol. Lett., 2009, 21(6):362-364.
Lou F, Wang Z, Dai D, et al. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides [J]. Appl. Phys. Lett., 2012, 100(24):241105-1-4.
Han Z, He S. Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter [J]. Opt. Commun., 2007, 278(1):199-203.
Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons [J]. Opt. Commun., 2006, 259(2):690-695.
Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic bragg reflector [J]. Opt. Exp., 2006, 14(23):11318-11323.
Lin X, Huang X. Tooth-shaped plasmonic waveguide filters with nanometeric sizes [J]. Opt. Lett., 2008, 33(23): 2875-2877.
Pannipitiya A, Rukhlenko I D, Premaratne M, et al. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure [J]. Opt. Exp., 2010, 18(6):6191-6204.
Zou G, Xiao Y, Han Z, et al. High-Q nanoring surface plasmon microresonator [J]. J. Opt. Soc. Am. B, 2010, 27(12):2495-2498.
Ordal M A, Long L, Bell R J, et al. Optical properties of the metal Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared [J]. Appl. Opt., 1983, 22(7):1099-1119.
0
Views
135
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution