浏览全部资源
扫码关注微信
燕山大学电气工程学院,河北 秦皇岛,066004
Received:29 January 2014,
Revised:16 May 2014,
Published:03 July 2014
移动端阅览
郭士亮, 黄惠, 沙晓鹏等. 八边形晶格双芯光子晶体光纤偏振分束器[J]. 发光学报, 2014,35(7): 878-882
GUO Shi-liang, HUANG Hui, SHA Xiao-peng etc. Polarization Splitter Based on Octagonal Dual-core Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2014,35(7): 878-882
郭士亮, 黄惠, 沙晓鹏等. 八边形晶格双芯光子晶体光纤偏振分束器[J]. 发光学报, 2014,35(7): 878-882 DOI: 10.3788/fgxb20143507.0878.
GUO Shi-liang, HUANG Hui, SHA Xiao-peng etc. Polarization Splitter Based on Octagonal Dual-core Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2014,35(7): 878-882 DOI: 10.3788/fgxb20143507.0878.
分别以碲玻璃和SF6玻璃作为基质材料,设计制作了一种基于双折射效应的新型八边形晶格双芯光子晶体光纤偏振分束器。应用全矢量有限元法(FEM)分析了碲玻璃和SF6两种双芯光子晶体光纤中结构参数对双折射和相对耦合长度特性的影响,数值模拟了碲玻璃和SF6两种偏振分束器的性能。结果表明:在碲玻璃和SF6两种双芯光子晶体光纤中,增大椭圆率可同时增加结构的双折射和相对耦合长度,与SF6玻璃偏振分束器相比较,碲玻璃偏振分束器具有更高的消光比和更大的带宽,即在工作波长为1.55 m处,消光比达到最小值-53.46 dB,且消光比小于-20 dB的带宽为120 nm。
Based on the birefringence effect
a novel duel-core photonic crystal fiber polarization beam splitter was proposed. Tellurite glass and SF6 glass were used as the material for the PCF
respectively. Using the full-vector finite element method (FEM)
the effects of structural parameters on birefringence and relative coupling length were analyzed
and the characteristics of the splitters
such as coupling length
extinction ratio and bandwidth were simulated. The numerical simulation results demonstrate that the tellurite glass splitter has higher extinction ratio and bandwidth than the SF6 glass splitter. The extinction ratio of the tellurite glass splitter is -53.46 dB at the wavelength of 1.55 m
and the bandwidth is over 120 nm when the extinction ratio is less than -20 dB.
Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber [J]. Opt. Lett., 1997, 22(13):961-963.
Yu C X, Yuan J H, Shen X W. Recent progress of study on photonic crystal fiber [J]. Acta Optica Sinica (光学学报), 2011, 31(9):0900139-1-5 (in Chinese).
Ademgil H, Haxha S. Endlessly single mode photonic crystal fiber with improved effective mode area [J]. Opt. Commun., 2012, 285(6):1514-1518.
Zhou Q L, Lu X Q, Zhang G, et al. Mode characteristics of a large mode area flattened-mode photonic crystal fiber [J]. Acta Optica Sinica (光学学报), 2010, 30(5):1497-1500 (in Chinese).
Liao J, Sun J, Qin Y, et al. Ultra-flattened chromatic dispersion and highly nonlinear photonic crystal fibers with ultralow confinement loss employing hybrid cladding [J]. Opt. Fiber Technol., 2013, 19(5):468-475.
Guan S H, Yu Q X, Zheng J Z. Study on the extreme characteristics of dispersion of photonic crystal fiber [J]. Acta Optica Sinica (光学学报), 2012, 32(8):0806001-1-5 (in Chinese).
Lin J H, Wang J Y, Wang R, et al. A novel polarization splitter based on dual-core hybrid photonic crystal fibers [J]. Opt. Laser Technol., 2011, 43:795-800.
Mayilamu M, Lu Y, Hao C, et al. Highly birefringence low loss index guiding photonic crystal fiber with differently sized air-holes in cladding [J]. SPIE, 2013, 9044:904409-1-7.
Hasan M I, Selim Habib M, Samiul Habib M, et al. Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber [J]. Opt. Fiber Technol., 2014, 20(1):32-38.
Hameed M F O, Obayya S S A. Coupling characteristics of dual liquid crystal core soft glass photonic crystal fiber [J]. IEEE J. Quant. Electron., 2011, 47(10):1283-1290.
Salgueiro J R, Santos F. Nonlinear vortex modes in dual-core photonic crystal fiber couplers [J]. JOSA B, 2009, 26(12):2301-2307.
Zhang B, Tan X L, Xue R Q, et al. Polarization splitter based on double rectangular-core photonic crystal fibers [J]. Infrared and Laser Engineering (红外与激光工程), 2012, 41(3):745-749 (in Chinese).
Li R M, Cao Y, Tong Z R. Short length polarization splitter based on dual elliptical-core photonic crystal fiber [J]. Chin. J. Lasers (中国激光), 2012, 39(10):1005004-1-5 (in Chinese).
Cerqueira Jr S A. Recent progress and novel applications of photonic crystal fibers [J]. Reports on Progress in Physics, 2010, 73(2):024401-1-7.
Zhou G Y, Hou Z Y, Li S G, et al. Fabrication of glass photonic crystal fibers with a die-cast process [J]. Appl. Opt., 2006, 45(18):4433-4436.
Liu S, Li S G, Yin G B, et al. A novel polarization splitter in ZnTe tellurite glass three-core photonic crystal fiber [J]. Opt. Commun., 2012, 285:1097-1102.
Cao Ye, Cui D N, Tong Z R, et al. Dual-core photonic crystal fiber polarization splitter based on tellurite glass [J]. Chin. J. Lasers (中国激光), 2013, 40(6):0605007-1-5 (in Chinese).
Liu S, Li S G, Du Y. Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber [J]. Opt. Laser Technol., 2012, 44:1813-1817.
Li D, Liu M, Jian D, et al. Characteristics of highly birefringent dual-core photonic crystal fibers [J]. Chin. J. Lasers(中国激光), 2012, 39(4):0405005-1-5 (in Chinese).
Wang Z, Taru T, Birks T A, et al. Coupling in dual-core photonic bandgap fibers: Theory and experiment [J]. Opt. Exp., 2007, 15(8):4795-4803.
0
Views
125
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution