浏览全部资源
扫码关注微信
中国海洋大学 材料科学与工程研究院,山东 青岛,266100
Received:07 April 2014,
Revised:09 May 2014,
Published:03 July 2014
移动端阅览
秦俊杰, 曹立新, 柳伟等. ZnS:Mn/SiO<sub>2</sub>量子点的表面聚乙烯吡咯烷酮修饰及其应用于海水中铅离子检测[J]. 发光学报, 2014,35(7): 858-865
QIN Jun-jie, CAO Li-xin, LIU Wei etc. ZnS:Mn/SiO<sub>2</sub> Quantum Dots Modified with PVP as Fluorescent Sensor for Pb<sup>2+</sup> Ions in Sea Water[J]. Chinese Journal of Luminescence, 2014,35(7): 858-865
秦俊杰, 曹立新, 柳伟等. ZnS:Mn/SiO<sub>2</sub>量子点的表面聚乙烯吡咯烷酮修饰及其应用于海水中铅离子检测[J]. 发光学报, 2014,35(7): 858-865 DOI: 10.3788/fgxb20143507.0858.
QIN Jun-jie, CAO Li-xin, LIU Wei etc. ZnS:Mn/SiO<sub>2</sub> Quantum Dots Modified with PVP as Fluorescent Sensor for Pb<sup>2+</sup> Ions in Sea Water[J]. Chinese Journal of Luminescence, 2014,35(7): 858-865 DOI: 10.3788/fgxb20143507.0858.
制备了二氧化硅壳层修饰的ZnS:Mn量子点,基于聚乙烯吡咯烷酮(PVP)与二氧化硅表面硅羟基的作用,在纳米复合微粒表面进行了PVP的修饰,得到了在海水中荧光性能及胶体稳定性良好的ZnS:Mn/SiO
2
/PVP 量子点。在Pb
2+
对所制备纳米微粒具有荧光猝灭效应的基础上,建立了用ZnS:Mn/SiO
2
/PVP 量子点作为荧光探针检测海水中微量铅离子的新方法。研究表明,量子点浓度为10
-3
mol/L时,海水中离子浓度在10~100 mol/L范围内与ZnS:Mn/SiO
2
/PVP量子点荧光猝灭强度呈良好的线性关系,相关系数为0.994 6,检出限为810
-7
mol/L。
SiO
2
coated ZnS:Mn quantum dots were synthesized and modified with PVP. The proce dure of modification was based on the effect between amido band of PVP and hydroxyl of SiO
2
. ZnS: Mn/SiO
2
/PVP quantum dots had an excellent fluorescence stability and colloid stability in sea water. Based on the fluorescence quenching of Pb
2+
to ZnS:Mn/SiO
2
/PVP
a novel method for determination of Pb
2+
in sea water was developed. With a concentration of 10
-3
mol/L
the quenched fluorescence intensity of ZnS:Mn/SiO
2
/PVP is linearly in proportion to the concentration of Pb
2+
in sea water from 10 to 100 mol/L. The correlation coefficient
R
is 0.994 6
and the detection limit for Pb
2+
in sea water is 810
-7
mol/L.
Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nat. Mater., 2005, 4(6):435-446.
Li Z, Peng X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: Ligand and temperature effects [J]. J. Am. Chem. Soc., 2011, 133(17):6578-6586.
Tian X, Cao L X, Liu W, et al. Synthesis and photoluminescent properties of core/shell structure ZnS:Cu/ZnS quantum dots [J]. Chin. J. Lumin.(发光学报), 2012, 33(7):736-741 (in Chinese)
Lei W, Cao L X, Liu W, et al. Synthesis and photoluminescent properties of ZnSe:Cu/CdS core/shell quantum dots [J]. Chin. J. Lumin.(发光学报), 2013, 34(6):686-691(in Chinese)
Dong B, Cao L, Su G, et al. Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions [J]. J. Colloid Interf. Sci., 2009, 339(1):78-82.
Durgadas C V, Sreenivasan K, Sharma C P. Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility [J]. Biomaterials, 2012, 33(27):6420-6429.
Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells [J]. Science, 2002, 295(5564): 2425-2427.
Tanke H J, Dirks R W, Raap T. FISH and immunocytochemistry: Towards visualising single target molecules in living cells [J]. Curr. Opin. Biotechnol., 2005, 16(1):49-54.
Tu R, Liu B, Wang Z, et al. Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive [J]. Anal. Chem., 2008, 80(9):3458-3465.
Susumu K, Uyeda H T, Medintz I L, et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands [J]. J. Am. Chem. Soc., 2007, 129(45):13987-13996.
Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science, 2002, 298(5599):1759-1762.
Jana N R, Erathodiyil N, Jiang J, et al. Cysteine-functionalized polyaspartic acid: A polymer for coating and bioconjugation of nanoparticles and quantum dots [J]. Langmuir, 2010, 26(9):6503-6507.
Hussain I, Graham S, Wang Z, et al. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers [J]. J. Am. Chem. Soc., 2005, 127(47):16398-16399.
Susumu K, Uyeda H T, Medintz I L, et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands [J]. J. Am. Chem. Soc., 2007, 129(45):13987-13996.
Han C, Li H. Host-molecule-coated quantum dots as fluorescent sensors [J]. Anal. Bioanal. Chem., 2010, 397(4):1437-1444.
Gatts-Asfura K M, Leblanc R M. Peptide-coated CdS quantum dots for the optical detection of copper (Ⅱ) and silver (I) [J]. Chem. Commun., 2003(21):2684-2685.
Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem., 2002, 74(19): 5132-5138.
Zhang K, Guo J, Nie J, et al. Ultrasensitive and selective detection of Cu2+ in aqueous solution with fluorescence enhanced CdSe quantum dots [J]. Sens. Actuat. B, 2014, 190:279-287.
Qi Y X, Zhang M, Fu Q Q, et al. Highly sensitive and selective fluorescent detection of cerebral lead (Ⅱ) based on graphene quantum dot conjugates [J]. Chem. Commun., 2013, 49(90):10599-10601.
Arduini M, Mancin F, Tecilla P, et al. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection [J]. Langmuir, 2007, 23(16):8632-8636.
Stuart C, Fleer G J, Bijsterbosch B H. The absorption of poly (vinyl pyrrolidone) onto silica. I. Adsorbed amount [J]. J. Colloid Interf. Sci., 1982, 90(2):310-320.
Van de Steeg H G M, Cohen Stuart M A, De Keizer A, et al. Polyelectrolyte adsorption: A subtle balance of forces [J]. Langmuir, 1992, 8(10):2538-2546.
Gun'ko V M, Zarko V I, Voronin E F, et al. Successive interaction of pairs of soluble organics with nanosilica in aqueous media [J]. J. Colloid Interf. Sci., 2006, 300(1):20-32.
0
Views
128
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution