浏览全部资源
扫码关注微信
天津理工大学 材料物理研究所, 光电器件与显示材料教育部重点实验室 天津,300384
Received:02 April 2014,
Revised:17 April 2014,
Published Online:09 May 2014,
Published:03 July 2014
移动端阅览
石庆良, 徐建萍, 王雪亮等. PbS纳米晶修饰的ZnO/PVP复合电双稳器件阻变机制[J]. 发光学报, 2014,35(7): 846-852
SHI Qing-liang, XU Jian-ping, WANG Xue-liang etc. Resistance Switching Mechanism of Bistable Memory Device Based on ZnO/PVP Modified by PbS Nanocrystal[J]. Chinese Journal of Luminescence, 2014,35(7): 846-852
石庆良, 徐建萍, 王雪亮等. PbS纳米晶修饰的ZnO/PVP复合电双稳器件阻变机制[J]. 发光学报, 2014,35(7): 846-852 DOI: 10.3788/fgxb20143507.0846.
SHI Qing-liang, XU Jian-ping, WANG Xue-liang etc. Resistance Switching Mechanism of Bistable Memory Device Based on ZnO/PVP Modified by PbS Nanocrystal[J]. Chinese Journal of Luminescence, 2014,35(7): 846-852 DOI: 10.3788/fgxb20143507.0846.
采用简单旋涂工艺制备了具有ITO/PVP/ZnO NCs/PbS NCs/PVP/Al 夹心结构的有机/无机复合电双稳存储器件,与没有PbS纳米晶修饰层的器件ITO/PVP/ZnO NCs/PVP/Al相比,PbS纳米晶的引入使目标器件的开关比提高了2个数量级。结合器件的
I-V
曲线和能级结构分析了PbS 纳米晶修饰层对器件阻变和载流子传输的影响。结果显示,PbS纳米晶层的加入不仅优化了器件能级结构,有利于载流子的俘获和释放,还修饰了ZnO纳米晶的表面缺陷,降低了器件载流子的复合损耗。
An organic/inorganic composite electrical bistable device with the sandwich structure of ITO/PVP/ZnO nanocrystal (NCs)/PbS nanocrystal (NCs)/PVP/Al was fabricated. Compared with the device structure of ITO/PVP/ZnO NPs/PVP/Al
the ON/OFF ratio of target device was improved by 2 orders of magnitude. The carrier transportation and resistance switching mechanism of device were discussed
via I-V
characteristics and the energy band structures of the devices. The effective capture/release of electrons could be attributed to the optimization of device structure and modification of ZnO NCs surface by PbS NCs layer.
Cho B, Song S, Ji Y, et al. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures [J]. Adv. Funct. Mater., 2011, 21(15):2806-2829.
Kim T W, Yang Y, Li F, et al. Electrical memory devices based on inorganic/organic nanocomposites [J]. NPG. Asia. Mater., 2012, 4(6):e18-1-12.
Son D I, Park D H, Kim J B, et al. Bistable organic memory device with gold nanoparticles embedded in a conducting poly(n-vinylcarbazole) colloids hybrid [J]. J. Phys. Chem. C, 2010, 115(5):2341-2348.
Biswas B, Chowdhury A, Sanyal M K, et al. Electric field induced tunable bistable conductance switching and the memory effect of thiol capped CdS quantum dots embedded in poly(methyl methacrylate) thin films [J]. J. Mater. Chem. C, 2013, 1(6):1211-1222.
Tang A, Teng F, Hou Y, et al. Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol [J]. Appl. Phys. Lett., 2010, 96(16):163112-1-3.
Son D I, Kim T W, Shim J H, et al. Flexible organic bistable devices based on graphene embedded in an insulating poly (methyl methacrylate) polymer layer [J]. Nano. Lett., 2010, 10(7):2441-2447.
Djurii? A B, Ng A M C, Chen X Y, et al. ZnO nanostructures for optoelectronics: Material properties and device applications [J]. Prog.Quant. Electron., 2010, 34(4):191-259.
Shen D Z, Shan C X, Zhang Z Z, et al. ZnO-based material, heterojunction and photoelectronic devices [J]. Chin. J. Lumin.(发光学报), 2014, 35(1):1-60 (in Chinese).
Koster L J A, Van Strien W J, Beek W J E, et al. Device operation of conjugated polymer/zinc oxide bulk heterojunction solar cells [J]. Adv. Funct. Mater., 2007, 17(8):1297-1302.
Chang W Y, Lin C A, He J H, et al. Resistive switching behaviors of ZnO nanorod layers [J]. Appl. Phys. Lett., 2010, 96(24):242109-1-3.
Son D I, Park D H, Choi W K, et al. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer [J]. Nanotechnol., 2009, 20(19):195203-1-6.
Wang D W, Zhao S L, Xu Z, et al. The improvement of near-ultraviolet electroluminescence of ZnO nanorods/MEH-PPV heterostructure by using a ZnS buffer layer [J]. Org. Electron., 2011, 12(1):92-97.
Chou C H, Kwan W L, Hong Z, et al. A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture [J]. Adv. Mater., 2011, 23(10):1282-1286.
McDonald S A, Konstantatos G, Zhang S, et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J]. Nat. Mater., 2005, 4(2):138-142.
Wang L, Zhao D, Su Z, et al. Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots [J]. Nanoscale. Res. Lett., 2012, 7(1):1-6.
Tang X, Choo E S G, Li L, et al. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications [J]. Chem. Mater., 2010, 22(11):3383-3388.
Hines M A, Scholes G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution [J]. Adv. Mater., 2003, 15(21):1844-1849.
Kannan V, Chae Y S, Ramana C H V V, et al. All-inorganic spin-cast quantum dot based bipolar nonvolatile resistive memory [J]. J. Appl. Phys., 2011, 109(8):086103-1-3.
You Y T, Wang M L, Xuxie H N, et al. Conductance-dependent negative differential resistance in organic memory devices [J]. Appl. Phys. Lett., 2010, 97(23):233301-1-3.
Manzoor K, Vadera S R, Kumar N, et al. Energy transfer from organic surface adsorbate-polyvinyl pyrrolidone molecules to luminescent centers in ZnS nanocrystals [J]. Solid State Commun., 2004, 129(7):469-473.
Grabowska J, Meaney A, Nanda K K, et al. Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential [J]. Phys. Rev. B, 2005, 71(11):115439-1-7.
Chen C, Xie Y, Ali G, et al. Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer [J]. Nanotechnol., 2011, 22(1):015202-1-8.
Zheng K, Zhao J, Sun X, et al. Resistive switching in a GaOx-NiOx p-n heterojunction [J]. Appl. Phys. Lett., 2012, 101(14):143110-1-5.
Lampert M A, Many A, Mark P. Space-charge-limited currents injected from a point contact [J]. Phys. Rev., 1964, 135 (5A):A1444-A1453.
0
Views
68
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution