ZHONG Lin-jian, XING Yan-hui, HAN Jun etc. Influence of Growth Time of AlN Interfacial Layer on Electrical Properties of AlGaN/AlN/GaN HEMT Materials[J]. Chinese Journal of Luminescence, 2014,35(7): 830-834
ZHONG Lin-jian, XING Yan-hui, HAN Jun etc. Influence of Growth Time of AlN Interfacial Layer on Electrical Properties of AlGaN/AlN/GaN HEMT Materials[J]. Chinese Journal of Luminescence, 2014,35(7): 830-834 DOI: 10.3788/fgxb20143507.0830.
Influence of Growth Time of AlN Interfacial Layer on Electrical Properties of AlGaN/AlN/GaN HEMT Materials
AlGaN/AlN/GaN HEMT structures were grown on sapphire substrate by MOCVD with different AlN growing time
and the influence of AlN thickness on electrical properties was investigated. When AlN growth time is about 12 s corresponding to the AlN thickness of 1~1.5 nm
the sample has the best performance of electrical properties with the lowest sheet resistance of 359 sq
-1
the highest 2DEG concentration of 1.1610
13
cm
-2
and a high 2DEG mobility of
1
500 cm
2
V
-1
s
-1
. AFM results indicate that AlN layer within a certain thickness range has little influence on the surface morphology. HRXRD results show that AlGaN/AlN/GaN HEMT has a good heterostructure interface.
关键词
Keywords
references
Wang C M, Wang X L, Hu G X, et al. Influence of AlN interfacial layer on electrical properties of high-Al-content Al0.45Ga0.55N/GaN HEMT structure [J]. Appl. Surf. Sci., 2006, 253(2):762-765.
Wang C M, Wang X L, Hu G X, et al. The effect of AlN growth time on the electrical properties of Al0.38Ga0.62N/AlN/GaN HEMT structures [J]. J. Cryst. Growth, 2006, 289(2):415-418.
Chen X, Xing Y H, Han J, et al. Influence of AlN interfacial layer on electrical properties of AlGaN/AlN/GaN HEMT materials grown by MOCVD [J]. Chin. J. Lasers (中国激光), 2013, 40(6):0606005-1-5 (in Chinese).
Xue J S, Hao Y, Zhang J C, et al. Improved electrical properties of the two-dimensional electron gas in AlGaN/GaN heterostructures using high temperature AlN interlayers [J]. Sci. China (中国科学), 2010, 53(6):1567-1571 (in Chinese).
Ding G J, Guo L W, Xing Z G, et al. Characterization of different-Al-content AlGaN/GaN heterostructures on sapphire [J]. Sci. China (中国科学), 2010, 53(1):49-53 (in Chinese).
Wang X L, Hu G X, Wang C M, et al. MOCVD grown high-mobility AlGaN/AlN/GaN HEMT structure on sapphire substrate [J]. J. Cryst. Growth, 2007, 298(1):791-793.
Dimitrov R, Murphy M, Smart J, et al. Two-dimensional electron gases in Ga-face and N-face AlGaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and metalorganic chemical vapor deposition on sapphire [J]. J. Appl. Phys., 2000, 87(7):3375-3380.
Baishakhi M, Kaun S W, Lu J, et al. Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures [J]. Appl. Phys. Lett., 2013, 102(11):111603-1-5.
Kawakami Y, Shimizu M, Nakanishi H, et al. Improvements of surface morphology and sheet resistance of AlGaN/GaN HEMT structures using quasi AlGaN barrier layers [J]. J. Cryst. Growth, 2007, 300(1):168-171.
Kawakami Y, Shimizu M, Nakanishi H, et al. Improved electrical properties in AlGaN/GaN heterostructures using AlN/GaN superlattice as a quasi-AlGaN barrier [J]. Appl. Phys. Lett., 2007, 90(24):242112-1-3.
Smorchkova I P, Chen L, Mates T, et al. AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy [J]. J. Appl. Phys., 2001, 90(10):5196-5201.
Balme R S, Hilton K P, Nash K J, et al. AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer [J]. Phys. Stat. Sol.(c), 2003(7):2331-2334.
Wu Y F, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization [J]. IEEE Electron Dev. Lett., 2004, 25(3):117-119.