DONG Hao, ZHAO Xiao-hui, QU Liang-dong etc. Preparation and Characteristics of Reduced Graphene Oxide-zinc Selenide Nano Optoelectronic Materials[J]. Chinese Journal of Luminescence, 2014,35(7): 767-771
Reduced graphene oxide-ZnSe (r-GO/ZnSe) nanocomposites were successfully synthesized by an easy hydrothermal method. This process used the graphene oxide nanosheets as dispersant and two-dimensional growth template for ZnSe
resulting in the
in situ
formation of ZnSe nanoparticles on graphene oxide nanosheets and subsequent reduction of graphene oxide to r-GO. The samples were characterized by XRD
TEM
and FT-IR. The results show that the cubic ZnSe nanoparticles with the mean size of 30 nm distribute on r-GO sheets to form compact composites. UV-Vis absorption spectra indicate that the absorption edge of r-GO/ZnSe is at about 445 nm. PL spectra show a strong emission peak at 470 nm excited by 430 nm. The obtained r-GO/ZnSe nanocomposites may play important role in white LED field.
关键词
Keywords
references
Yeh C Y, Lu Z W, Froyen S, et al. Zinc-blendeWurtzite polytypism in semiconductors [J]. Phys. Rev. B, 1992, 46(16):10086-10097.
Wang J L, Yang C M, Zhi P. Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires [J]. Mater, Chem., 2012, 22:10009-10014.
Wang D, Li H Y, Jie W Q. Synthesis of ZnSe microspheres by chemical vapor deposition [J]. J. Synth. Cryst.(人工晶体学报), 2011, 40(3):584-588 (in Chinese).
Zhao L J, Pang Q, Cai Y, et al. Vertically aligned zinc selenide nanoribbon arrays: Microstructure and field emission [J]. Phys. D: Appl. Phys., 2007, 40(12):3587-3591.
Fang X S, Xiong S L, Zhai T Y, et al. High-performance blue/ultraviolet-light sensitive ZnSe-nanobelt photodetectors [J]. Adv. Mater., 2009, 21:5016-5021.
Cao F, Shi W D, Zhao L J, et al. Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures [J]. J. Phys. Chem. C, 2008, 112:17095-17101.
Wang X, Ma X L, Feng X, et al. Controlled synthesis and characterization of ZnSe and ZnS quantum dots [J]. Chin. J. Lumin.(发光学报), 2009, 30(6):818-823 (in Chinese).
Wang L, Cao L X, Liu W, et al. Synthesis and photoluminescent properties of ZnSe:Cu /CdS core /shell quantum dots [J]. Chin. J. Lumin.(发光学报), 2013, 34(6):686-691 (in Chinese).
Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition [J]. Nat. Mater., 2011, 10(6):424-428.
Huang Y, Chen Y S. Functionalization of graphene and their application [J]. Sci. China Ser. B: Chem., 2009, 39(9):887-896.
Fu X, Bei F, Wang X, et al. Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives [J]. Nanoscale, 2010, 2(8):1461-1466.
Song H S, Yang C, Liu D B. Dielectric properties of graphene/epoxy composites [J]. J. Funct. Mater.(功能材料), 2012, 43(9):1185-1188 (in Chinese).
Wu J L, Shen X P, Jiang L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites [J]. Appl. Surf. Sci., 2010, 256(9):2826-2830.
Bao J, Shen Y, Hu G J, et al. Dielectric properties of graphene/epoxy composites [J]. J. Infrared Millim. Waves (红外与毫米波学报), 2008, 27(6):405-408 (in Chinese).
Yang K, Wang M Q, Yao X. Preparation and physical properties of nano-ZnSe/SiO2 mesoporous composite for assembly aystem [J]. J. Electroceram., 2008, 21:741-744.
Chen G Y, Zhang W X, Liang J C, et al. Hydrothermal synthesis, characterization and properties of single-crystal Sb2Se3 nanoribbons [J]. Rare Metal Mater. Eng.(稀有金属材料与工程), 2010, 39(1):1-4 (in Chinese).
Wu R, Jiang N N, Li J, et al. Synthesis of ZnSe nanomaterials via solvothermal method [J]. J. Iong. Mater.(无机材料学报), 2013, 28(6):579-583 (in Chinese).
Shi L, Xu Y M, Li Q. Controlled fabrication of ZnSe arrays of well-aligned nanorods, nanowires and nanobells with a facile template-free route [J]. J. Phys. Chem. C, 2009, 113:1795-1799.
Philipse U, Xu T, Yang S, et al. Enhancement of band edge luminescence in ZnSe nanowires [J]. J. Appl. Phys., 2006, 100(8):084316-1-6.