ZHANG Tian-shi, YU Xiao-zhou, WANG Hui-yuan etc. Solvothermal Synthesis and Electrochemical Properties of Lithium-ion Batteries Anode Materials CNT-ZnFe<sub>2</sub>O<sub>4</sub>[J]. Chinese Journal of Luminescence, 2014,35(6): 732-736
ZHANG Tian-shi, YU Xiao-zhou, WANG Hui-yuan etc. Solvothermal Synthesis and Electrochemical Properties of Lithium-ion Batteries Anode Materials CNT-ZnFe<sub>2</sub>O<sub>4</sub>[J]. Chinese Journal of Luminescence, 2014,35(6): 732-736 DOI: 10.3788/fgxb20143506.0732.
Solvothermal Synthesis and Electrochemical Properties of Lithium-ion Batteries Anode Materials CNT-ZnFe2O4
In order to improve the electrochemical properties of lithium-ion batteries anode material ZnFe
2
O
4
we have prepared ZnFe
2
O
4
and a composite modified with carbon nanotubes by solvothermal reaction. The as-prepared CNT-ZnFe
2
O
4
composite displays an excellent cycle stability with the discharge capacity of 860 mAhg
-1
after 50 cycles. In addition
the CNT-ZnFe
2
O
4
composite has good electrical conductivity because of the excellent electrical conductivity and thermal conductivity of the carbon nanotubes.
关键词
Keywords
references
Ji L W, Lin Z, Alcoutlabi M. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environ. Sci., 2011, 4(8):2682-2699.
Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium battery materials [J]. J. Mater. Chem., 2011, 21(27):9938-9954.
Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803):496-499.
Wang Z Y, Zhou L, Lou X W. Metal oxide hollow nanostructures for lithium-ion batteries [J]. Adv. Mater., 2012, 24(14):1903-1911.
Shaju K M, Jiao F, Debart A, et al. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries [J]. Phys. Chem., 2007, 9(15):1837-1842.
Zhang M, Lei D N, Du Z F, et al. Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions [J]. J. Mater. Chem., 2011, 21(6):1673-1676.
Zhang W M, Wu X L, Hu J S, et al. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries [J]. Adv. Funct. Mater., 2008, 18(24):3941-3946.
Bresser D, Paillard E, Kloepsch R, et al. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes [J]. Adv. Energy Mater., 2013, 3(4):513-523.
Deng Y F, Zhang Q M, Tang S D, et al. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries [J]. Chem. Commun., 2011, 47(24):6828-6830.
Xing Z, Ju Z C, Yang J, et al. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries [J]. Nano Res., 2012, 5(7):477-485.
Sui J H, Zhang C, Hong D, et al. Facile synthesis of MWCNTs/ZnFe2O4 nanocomposites as anode materials for lithium ion batteries [J]. J. Mater. Chem., 2012, 22(27):13674-13681.
Zhang Y, Gao X P, Hu H, et al. Fe2O3 filled carbon nanotubes as anode material for lithium-ion battery electrochemical performance [J]. Chin. J. Inorg. Chem.(无机化学学报), 2004, 20(9):1013-1017 (in Chinese).
Ren J G, Yang J B, Abouimrane A, et al. SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries [J]. J. Power Sources, 2011, 196(20):8701-8705.
Ding Y, Yang Y F, Shao H X. High capacity ZnFe2O4 anode material for lithium ion batteries [J]. Electrochim. Acta, 2011, 56(25):9433-9438.
Feng X Y, Shen C, Yu Y, et al. Synthesis and electrochemical properties of sticktight-like and nanosheet Co3O4 particles [J]. J. Power Sources, 2013, 230:59-65.
Gong C, Bai Y J, Qi Y X, et al. Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance [J]. Electrochim. Acta, 2013, 90:119-127.
Guo X W, Lu X, Fang X P, et al. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries [J]. Electrochem. Commun., 2010, 12(6):847-850.
Ayyappan S, Paneerselvam G, Antony M P, et al. Structural stability of ZnFe2O4 nanoparticles under different annealing conditions [J]. Mater. Chem. Phys., 2011, 128(3):400-404.
Guo C X, Zheng X T, Lu Z S, et al. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection [J]. Adv. Mater., 2010, 22(45):5164-5167.
Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv. Funct. Mater., 2011, 21(9):1717-1722.
Song W T, Xie J, Hu W Y, et al. Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries [J]. J. Power Sources, 2013, 229:6-11.