GAO Li-li, LI Yong-feng, XU Ying etc. Effects of N<sub>2</sub> Flux Ratio on The Structure and Properties of MgZnO:N Films[J]. Chinese Journal of Luminescence, 2014,35(6): 689-694
GAO Li-li, LI Yong-feng, XU Ying etc. Effects of N<sub>2</sub> Flux Ratio on The Structure and Properties of MgZnO:N Films[J]. Chinese Journal of Luminescence, 2014,35(6): 689-694 DOI: 10.3788/fgxb20143506.0689.
Effects of N2 Flux Ratio on The Structure and Properties of MgZnO:N Films
N doped MgZnO films were prepared on quartz substrate by radio frequency magnetron sputtering technique. The effects of N
2
/(N
2
+Ar) flux ratio on the morphology
structure and properties of annealed MgZnO thin films were investigated. With the increasing flux ratio of N
2
/(N
2
+Ar)
the content of Mg increases
the average grain size becomes smaller
the crystal quality degrades
the resistivity increases
and the conductivity of the film changes. When the flux ratio of N
2
/(N
2
+Ar) is 20%
the MgZnO:N film behaves the best p-type conductivity property. Furthermore
the Raman peaks of the N for O site (N
O
) at 272 and 642 cm
-1
become stronger with the flux ratio of N
2
/(N
2
+Ar) increasing. It can be concluded that the doping concentration of N for O site (N
O
) increases with the flux ratio of N
2
/(N
2
+Ar) increasing.
关键词
Keywords
references
Bagnall D M, Chen Y F, Zhu Z, et al. Optically pumped lasing of ZnO at room temperature [J]. Appl. Phys. Lett., 1997, 70(17):2230-2232.
Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Appl. Phys. Lett., 1998, 72(25):3270-3272.
Fan X W. Research progress on growth and optical properties of wide band gap Ⅱ-Ⅵ compound semiconductors and its low dimensional structure [J]. Chin. J. Lumin.(发光学报), 2002, 23(4):317-329 (in Chinese).
Shen D Z, Mei Z X, Liang H L, et al. ZnO-based material, heterojunction and photoelctronic device [J]. Chin. J. Lumin.(发光学报), 2014, 35(1):1-60 (in Chinese).
Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nat. Mater., 2005, 4(1):42-46.
Look D C. Recent advances in ZnO materials and devices [J]. Mater. Sci. Eng. B, 2001, 80(1-3):83-87.
Ohtomo A, Kawasaki M, Koida T, et al. MgxZn1-xO as a Ⅱ-Ⅵ wide gap semiconductor alloy [J]. Appl. Phys. Lett., 1998, 72(19):2466-2468.
Choopun S, Vispute R D, Yang W, et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J]. Appl. Phys. Lett., 2002, 80(9):1529-1531.
Fujita S, Takagi T, Tanaka H, et al. Molecular beam epitaxy of MgxZn1-xO layers without wurzite-rocksalt phase mixing from x=0 to 1 as an effect of ZnO buffer layer [J]. Phys. Stat. Sol.(b), 2004, 241(3):599-602.
Du X, Mei Z, Liu Z, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21(45):4625-4630.
Li Y F, Yao B, Lu Y M, et al. Realization of p-type conduction in undoped MgxZn1-xO thin films by controlling Mg content [J]. Appl. Phys. Lett., 2007, 91(2):232115-1-3.
Wei Z P, Wu C X, Lu Y M, et al. MgxZn1-xO alloy grown by p-MBE and optical properties of MgZnO/ZnO heterostructure [J]. Chin. J. Lumin.(发光学报), 2006, 27(5):831-833 (in Chinese).
Lien S T, Li H C, Yang Y J, et al. Atmospheric pressure plasma jet annealed ZnO films for MgZnO/ZnO heterojunctions [J]. J. Phys. D: Appl. Phys., 2013, 46(7):075202-1-5.
Kong J Y, Li L, Yang Z, et al. Ultraviolet light emissions in MgZnO/ZnO double heterojunction diodes by molecular beam epitaxy [J]. J. Vac. Sci. Technol. B, 2010, 28(3):C3D10-C3D12.
Wei Z P, Yao B, Zhang Z Z, et al. Formation of p-type MgZnO by nitrogen doping [J]. Appl. Phys. Lett., 2006, 89(10):102104-1-3.
Mohanta S K, Nakamura A, Temmyo J. Synthesis and characterization of N, In co-doped MgZnO films using remote-plasma-enhanced metalorganic chemical vapor deposition [J]. J. Cryst. Growth, 2013, 375:1-5.
Chien J F, Shih H Y, Liao H Y. P-type conductivity of MgZnO:(N:Ga) thin films prepared by remote plasma in-situ atomic layer doping [J]. ECS J. Solid State Sci. Technol., 2013, 2(11):R249-R253.
Kobayashi A, Sankey O F, Dow J D. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, ZnS, and ZnO [J]. Phys. Rev. B, 1983, 28(2):946-956.
Liu L, Xu J L, Wang D D, et al. P-type conductivity in N-doped ZnO: The role of the NZn-VO complex [J]. Phys. Rev. Lett., 2012, 108(21):215501-1-3.
Reynolds J G, Reynolds C L, Mohanta A, et al. Shallow acceptor complexes in p-type ZnO [J]. Appl. Phys. Lett., 2013, 102(15):152114-1-3.
Cong C X, Yao B, Xing G Z, et al. Control of structure, conduction behavior, and band gap of Zn1-xMgxO films by nitrogen partial pressure ratio of sputtering gases [J]. Appl. Phys. Lett., 2006, 89(26):262108-1-3.
Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective [J]. Phys. Rev. B, 2002, 66(7):073202-1-3.
Barnes T M, Olsonandand K, Wolden C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide [J]. Appl. Phys. Lett., 2005, 86(11):112112-1-3.
Decremps F, Pellicer-Porres J, Saitta A M, et al. High-pressure Raman spectroscopy study of wurtzite ZnO [J]. Phys. Rev. B, 2002, 65(9):092101-1-6.
Gao L L, Yao B, Liu B, et al. Effects of Mg concentration on solubility and chemical state of N in N-doped MgZnO alloy [J]. J. Chem. Phys., 2010, 133(20):204501-1-5.