LI Xiang-qi, ZHANG Yi,. Influence of Calcination Temperature on The Luminescent Properties of Ba<sub>1.2</sub>Ca<sub>0.64</sub>SiO<sub>4</sub>:0.10Eu,0.06Mn Phosphor[J]. Chinese Journal of Luminescence, 2014,35(6): 643-648
LI Xiang-qi, ZHANG Yi,. Influence of Calcination Temperature on The Luminescent Properties of Ba<sub>1.2</sub>Ca<sub>0.64</sub>SiO<sub>4</sub>:0.10Eu,0.06Mn Phosphor[J]. Chinese Journal of Luminescence, 2014,35(6): 643-648 DOI: 10.3788/fgxb20143506.0643.
Influence of Calcination Temperature on The Luminescent Properties of Ba1.2Ca0.64SiO4:0.10Eu,0.06Mn Phosphor
0.06Mn phosphor was synthesized at 800~1 100℃ by using MCM-41 as Si source. The influence of calcination temperature on the luminescent properties was investigated. The results indicate that the intensity and bandwidth of Eu
2+
blue-green emission increase with temperature at first and then decrease. The sample calcined at 1 000℃ has the highest Eu
2+
emission intensity. The peak maximum shows red-shift from 450 nm to 480 nm when the calcination temperatures changed from 800℃ and 900℃ to 1 000℃ and 1 100℃. The red emission of Mn
2+
arises from the excitation by the Eu
2+
emission and increases with temperature. The Eu
2+
ions which can transfer energy to Mn
2+
are mainly on the ten-coordinated M(1) sites.
关键词
Keywords
references
Raut S K, Dhoble N S, Dhoble S J. Optical properties of Eu, Dy, Mn activated M2SiO4(M2=Ca, Sr, Zn) orthosilicate phosphors [J]. J. Lumin., 2013, 134(2):325-332.
Li Y, Wang Y, Gong Y, et al. Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation [J]. Acta Mater., 2011, 59(8):3174-3183.
Park K, Choi N, Kim J, et al. Temperature and excitation power-resistant white-light emission of the T-phase (Ba, Ca)2SiO4:Eu2+,Mn2+ phosphor [J]. Solid State Commun., 2010, 150(7-8):329-332.
Park K, Kim J, Kung P, et al. Thermally stable deep-blue Ba1.2Ca0.8SiO4:Ce3+ phosphor for white-light-emitting diode [J]. J. Lumin., 2010, 130(7):1292-1294.
Park K, Lee J, Park J, et al. White-light generation through Ce3+/Mn2+-codoped and Eu2+-doped Ba1.2Ca0.8SiO4 T-phase phosphors [J]. J. Lumin., 2010, 130(12):2442-2445.
Fang Y F, Li L K, Chen Y B, et al. Photoluminescence properties of Ce3+ and Ce3+-Eu2+ energy transfer in Ba1.3Ca0.7-SiO4 phosphors [J]. J. Lumin., 2013, 144(12):13-17.
Lu Q S, Wang P Y, Li J G. Structure and luminescence properties of Mn-doped Zn2SiO4 prepared with extracted mesoporous silica [J]. Mater. Res. Bull., 2011, 46(6):791-795.
Li X Q, Chen F Y. Structure and luminescence properties of Zn2SiO4:Mn phosphor prepared with MCM-48 [J]. Mater. Res. Bull., 2013, 48(6):2304-2307.
Lu Q S, Li J G. Low-temperature synthesis of Y2SiO5:Eu3+ powders using mesoporous silica and their luminescence properties [J]. Opt. Mater., 2011, 33(3):381-384.
Kadgaonkar M D, Laha S C, Pandey R K, et al. Cerium-containing MCM-41 materials as selective acylation and alkylation catalysts [J]. Catal. Today, 2004, 97(4):225-231.
Fukuda K, Ito M, Iwata T. Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4 [J]. J. Solid State Chem., 2007, 180(8):2305-2309.
Kima J S, Lim K T, Jeong Y S, et al. Full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphors for white-light-emitting diodes [J]. Solid State Commun., 2005, 135(1-2):21-24.
Peng M Y, Pei Z W, Hong G Y. The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4:Eu2+ phosphor [J]. J. Mater. Chem., 2003, 13(5):1202-1205.
Van Uitert L G. An empirical relation fitting the position in energy of the lower-band edge for Eu2+ or Ce3+ in various compounds [J]. J. Lumin., 1984, 29(1):l-9.