浏览全部资源
扫码关注微信
1. 华北电力大学 资源与环境研究院 北京,102206
2. 华北电力大学 区域能源系统优化教育部重点实验室 北京,102206
Received:11 January 2014,
Revised:18 February 2014,
Published:03 May 2014
移动端阅览
姜龙, 曾娅玲, 蔡啸宇等. 基于含时密度泛函理论的对位卤代二苯醚电子跃迁机理[J]. 发光学报, 2014,35(5): 627-636
JIANG Long, ZENG Ya-ling, CAI Xiao-yu etc. Electron Transition Mechanism of <em>para</em>-Halogenated Diphenyl Ethers Based on TD-DFT[J]. Chinese Journal of Luminescence, 2014,35(5): 627-636
姜龙, 曾娅玲, 蔡啸宇等. 基于含时密度泛函理论的对位卤代二苯醚电子跃迁机理[J]. 发光学报, 2014,35(5): 627-636 DOI: 10.3788/fgxb20143505.0627.
JIANG Long, ZENG Ya-ling, CAI Xiao-yu etc. Electron Transition Mechanism of <em>para</em>-Halogenated Diphenyl Ethers Based on TD-DFT[J]. Chinese Journal of Luminescence, 2014,35(5): 627-636 DOI: 10.3788/fgxb20143505.0627.
以二苯醚(DE)为参照物,借助Gaussian软件的量子化学计算并结合自然键理论与跃迁密度矩阵平面图对9种对位卤代二苯醚的基态分子活性、紫外光谱及基态-激发态电子跃迁机理进行了对比分析。研究结果表明:处于基态时的DE与4,4-二氯二苯醚(CDE-15)分别最易发生亲电/核反应,对位卤代基的引入缩小了DE的能级差。随着取代基体积的增大,对位取代二苯醚紫外光谱的最大吸收波长变大,吸收增强。所研究的10种物质有着相似的跃迁机理。
Taking diphenyl ether (DE) as the reference
the molecule activity on ground state
ultraviolet spectrum and ground-excited state electron transitions mechanism of other 9
para
-halogenated diphenyl ethers were analyzed by the combination of Gaussian 09 software calculation
natural bond orbital theory
and transition density matrix. The results show that DE is most vulnerable to electrophilic substances in the ground state
meanswhile
CDE-15 is vulnerable to nucleophilic substances to lose electrons. The introduced para-halogen substituent can reduce the energy gap of DE
while the maximum absorption wavelength and absorption intensity of DE increase with the volume of substituents. Nine kinds of halogenated diphenyl ethers and DE have the similar ground-excited state electron transition mechanism.
Pijnenburg A M C M, Everts J W, Boer J, et al. Polybrominated biphenyl and diphenyl ether flame retardants: Analysis, toxicity, and environmental occurrence[J].Rev. Environ. Contam. T, 1995, 141:1-26.[2] Erickson P R, Grandbois M, Arnold W A, et al. Photochemical formation of brominated dioxins and other products of concern from hydroxylated polybrominated diphenyl ethers (OH-PBDEs)[J].Environ. Sci. Technol., 2012, 46(15):8174-8180.[3] Labunska I, Harrad S, Santillo D, et al. Domestic duck eggs: An important pathway of human exposure to PBDEs around e-waste and scrap metal processing areas in Eastern China[J].Environ. Sci.: Processes Impacts, 2013, 15(2):503-511.[4] Chevrier J, Harley K G, Bradman A, et al. Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy[J].Environ. Health Persp., 2010, 118(10):1444-1449.[5] Qiu S S, Tan X H, Wu K, et al. Experimental and theoretical study on molecular structure and FT-IR, Raman, NMR spectra of 4, 4'-dibromodiphenyl ether[J].Spectrochim. Acta A, 2010, 76(5):429-434.[6] Rayne S, Ikonomou M G, Whale M D. Anaerobic microbial and photochemical degradation of 4, 4'-dibromodiphenyl ether[J].Water Res., 2003, 37(3):551-560.[7] Li X, Huang J, Feng L, et al. Photodegradation of 2, 2', 4, 4'-tetrabromodiphenyl ether in nonionic surfactant solutions[J].Chemosphere., 2008, 73(10):1594-1601.[8] Zhou J, Chen J W, Liang C H, et al. Quantum chemical investigation on the mechanism and kinetics of PBDE photooxidation by 3OH: A case study for BDE-15[J].Environ. Sci. Technol., 2011, 45(11):4839-4845.[9] Jiang L, Cai X Y, Zhang C, et al. Study on structure, charge and spectrum for para-halogenated diphenyl ethers through density functional theory[J].Spectrosc. Spect. Anal.(光谱学与光谱分析), 2013, 33(11):3151-3156 (in Chinese).[10] Raff J D, Hites R A. Gas-phase reaction of brominated diphenyl ethers with OH radicals[J].J. Phys. Chem., 2006, 110(37):10783-10792.[11] Sun C, Zhao D, Chen C, et al. TiO2-mediated photocatalyticdebromination of decabromodipheny ether: Kinetics and intermediates[J].Environ. Sci. Technol., 2009, 43(1):157-162.[12] Guillaumont D, Nakamura S. Calculation of the absorption wavelength of dyes using time-dependent density-functional theory (TD-DFT)[J].Dyes Pigments, 2000, 46(2):85-92.[13] Wang S, Han C, Gao Z X, et al. Effects of excited-state structures and properties on photochemical degradation of polybrominated diphenyl ethers: A TDDFT study[J].Chemosphere, 2012, 88(1):33-38.[14] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A.02[M]. Wallingford, CT: Gaussian Inc., 2009.[15] Lu T, Chen F W. Multiwfn: A multifunctional wavefunction analyzer[J].J. Comp. Chem., 2012, 33(5):580-592.[16] Zou Q, Jiang L, Du X Y, et al. Optimization of phenanthrene structure and vibrational spectra studies based on density functional theory[J].Chin. J. Lumin.(发光学报), 2013, 34(11):3151-3156 (in Chinese).[17] Fang L, Huang J, Yu G, et al. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane[J].Chemosphere, 2008, 71(2):258-267.[18] Parr R G, Pearson R G. Absolute hardness: Companion parameter to absolute electronegativity[J].J. Am. Chem. Soc., 1983, 105(26):7512-7516.
0
Views
144
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution