浏览全部资源
扫码关注微信
电子科技大学电子薄膜与集成器件国家重点实验室,四川 成都,610054
Received:23 December 2013,
Revised:23 January 2014,
Published:03 May 2014
移动端阅览
杨帆, 韦敏, 邓宏等. 铜掺杂氧化锌薄膜阻变特性的研究[J]. 发光学报, 2014,35(5): 604-607
YANG Fan, WEI Min, DENG Hong etc. Characteristics of Copper Doped Zinc Oxide Thin Film Resistive Switching[J]. Chinese Journal of Luminescence, 2014,35(5): 604-607
杨帆, 韦敏, 邓宏等. 铜掺杂氧化锌薄膜阻变特性的研究[J]. 发光学报, 2014,35(5): 604-607 DOI: 10.3788/fgxb20143505.0604.
YANG Fan, WEI Min, DENG Hong etc. Characteristics of Copper Doped Zinc Oxide Thin Film Resistive Switching[J]. Chinese Journal of Luminescence, 2014,35(5): 604-607 DOI: 10.3788/fgxb20143505.0604.
以 ZnO:Al为底电极,Cu为顶电极,在同种工艺条件下分别制备了类电容结构的纯ZnO 阻变器件和ZnO:2%Cu阻变器件,分析比较了两种器件的典型
I
-
V
特性曲线、置位电压(
V
Set
)和复位电压(
V
Reset
)的分布范围、器件的耐久性。结果显示,ZnO:Cu阻变器件较纯ZnO阻变器件有更大的开关比和更稳定的循环性能。另外,研究了 ZnO:Cu阻变器件的阻变机理,通过对其
I
-
V
特性曲线分析得出以下结论:ZnO:Cu阻变器件在高阻态遵循空间电荷限制电流效应,低阻态符合欧姆定律。
Pure ZnO resistive switching and ZnO:2% Cu resistive switching with sandwich structure were fabricated in the same conditions. The bottom electrode was ZnO:Al
and the top electrode was Cu for the resistive switchings. The switching characteristics such as endurance
variations of threshold voltage as well as distribution of resistance were investigated. The results demonstrate that the ZnO:Cu devices exhibit more excellent switching performance than ZnO devices. In addition
the switching mechanism of ZnO:Cu resistive device were also studied in this paper. The
I
-
V
characteristics of the device indicate that the conduction mechanisms of high and low resistance states can be explained by trap-controlled space charge limited current (SCLC) and Ohmics law
respectively.
Yang J J, Pickett M D, Li X M, et al. Memristive switching mechanism for metal/oxide/metal nano devices[J].Nat. Nanotechnol., 2008, 3:429-433.[2] Waser R, Aono M. Nanoionics-based resistive switching memories[J].Nat. Mater., 2007, 6(11):833-840.[3] Kannan V, Senthilkumar V, Rhee J K. Multi-level conduction in NiO resistive memory device prepared by solution route[J].J. Phys. D: Appl. Phys., 2013, 46(9):095301-1-4.[4] Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nano-filaments in TiO2 resistive switching memory[J].Nat. Nanotechnol., 2010, 5:148-153.[5] Zhang J, Yang H, Zhang Q L, et al. Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition[J].Appl. Surf. Sci., 2013, 282:390-395.[6] Chen L, Guo H X, Xia Y D, et al. Resistive switching in the devices of Ag/amorphous Ag30Ge17Se53 films/Pt[J].Appl. Phys. A, 2010, 100(1):309-313.[7] Ma W J, Lin S P, Luo J M, et al. Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer[J].Appl. Phys. Lett., 2013, 103(26):262903-1-3.[8] Chen C, Yang Y C, Zeng F, et al. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device[J].Appl. Phys. Lett., 2010, 97(8):083502-1-3.[9] Jo S H, Kim K H, Lu W. High-density crossbar arrays based on a Si memristive system[J].Nano Lett., 2009, 9(2):870-874.[10] Scott J C, Bozano L D. Nonvolatile memory elements based on organic materials[J].Adv. Mater., 2007, 19(11):1452-1463.[11] Li H C, Chen Q, Chen X P, et al. Improvement of resistive switching in ZnO film by Ti doping[J].Thin Solid Films, 2013, 537:279-284.[12] Yang C Y, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application[J].Nano Lett., 2009, 9(4):1636-1643.[13] Kim M C, Lim K Y, Kim C O, et al. Effect of doping concentration on resistive switching behaviors of Cu-doped ZnO films[J].J. Korean Phys. Soc., 2011, 59(2):304-307.[14] Zhang J, Yang H, Zhang Q L, et al. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition[J].J. Appl. Phys., 2013, 102(1):012113-1-5.[15] Hlaing Oo W M, McCluskey M D, Huso J, et al. Incorporation of Cu acceptors in ZnO nanocrystals[J].J. Appl. Phys., 2010, 108(6):064301-1-5.[16] Wang X B, Li D M, Zeng F, et al. Microstructure and properties of Cu-doped ZnO films prepared by DC reactive magnetron sputtering[J].J. Phys. D:Appl. Phys., 2005, 38:4104-4108.
0
Views
218
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution