GU Hai-jia, TANG Xin-yue, YANG Shou-bin. Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures[J]. Chinese Journal of Luminescence, 2014,35(5): 600-603
GU Hai-jia, TANG Xin-yue, YANG Shou-bin. Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures[J]. Chinese Journal of Luminescence, 2014,35(5): 600-603 DOI: 10.3788/fgxb20143505.0600.
Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures
ZnO nanowires were synthesized by chemical vapor deposition method
and single ZnO nanowire semiconductor devices with Ohmic contact electrodes were fabricated using the micro grid template method. The electrical properties of the device were investigated at low temperatures. The results show that there are two types of transport mechanism: thermal activation and nearest-neighbor hopping mechanism from 300 to 60 K. The properties of ultraviolet light response and recovery of the device were tested at 300
200
and 100 K
respectively. The results show that the sensitivity of the device to ultraviolet is improved at low temperature
and the current recovery time increases with the temperature falling down.
关键词
Keywords
references
Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO[J].Superlatt. Microstruct., 2003, 34(1-2):3-32.[2] Ozgür U, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices[J].J. Appl. Phys. Lett., 2005, 98(4):041301-1-3.[3] Klingshirn C. ZnO: From basics towards applications[J].Phys, Stat. Sol. (b), 2007, 244(9):3027-3073.[4] Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches[J].Adv. Mater., 2002, 14(2):158-160.[5] Fan Z, Lu J G. Gate-refreshable nanowire chemical sensors[J].Appl. Phys. Lett., 2005, 86(12):123510-1-3.[6] Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors[J].Appl. Phys. Lett., 2004, 85(21):5052-5054.[7] Ju S, Lee K, Janes D B, et al. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics[J].Nano Lett., 2005, 5(11):2281-2286.[8] Chang P C, Lu J G. ZnO nanowire field-effect transistors[J].IEEE Trans. Elect., 2008, 55(11):2977-2987.[9] Heo Y W, Tien L C, Norton D P, et al. Pt/ZnO nanowire schottky diodes[J].Appl. Phys. Lett., 2004, 85(15): 3107-3109.[10] Lao C S, Liu J, Gao P. ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes[J].Nano Lett., 2006, 6(2):263-266.[11] Walukiewicz W, Shan W, Yu K M, et al. Interaction of localized electronic states with the conduction band: Band anticrossing in Ⅱ-Ⅳ semiconductor ternaries[J].Phys. Rev. Lett., 2000, 85(7):1552-1555.[12] Shafigh M, Veaceslav C, Jean-Luc B. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge mode[J].Phys. Rev. B, 2010, 12:10928-10932.[13] Lang Y, Gao H, Jiang W, et al. Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor[J].Sens. Actuat. A, 2012, 174:43-46.[14] Jiang W, Gao H, Xu L L, et al. Fabrication and electrical characteristics of individual ZnO submicron-wire field-effect transistor[J].Chin. Phys. Lett., 2012, 29(3):7102-1-3 (in English).[15] Lin Y F, Jian W B. The impact of nanocontact on nanowire based nanoelectronics[J].Nano Lett., 2008, 8(10):3146-3150.[16] Long Y Z, Duvail J L, Chen Z J, et al. Electrical conductivity and current-voltage characteristics of individual conducting polymer PEDOT nanowires[J].Chin. Phys. Lett., 2008, 25(9):3474-3477 (in English).[17] Kumar R, Khare N. Temperature dependence of conduction mechanism of ZnO and co-doped ZnO thin films[J].Thin Solid Films, 2008, 516(6):1302-1307.[18] Lin Y F, Jian W B. Contact to ZnO and intrinsic resistances of individual ZnO nanowires with a circular cross section[J].Appl. Phys. Lett., 2007, 90(22):223117-1-3.[19] Huang J H, Zhang K, Pan N, et al. Surface modification ZnO nanowires ultraviolet response enhancement effect[J].Chin. Phys. Lett., 2008, 57(12):7855-7859 (in Chinese).
Low Temperature 808 nm High Efficiency Semiconductor Laser
Preparation and Electroluminescence Properties of CsPbI3/ZnO/GaN Nano-composite Structure
Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser
Study on Carriers Transport Mechanism in OLED by Variable Temperature Transient Electroluminescence
Deposition of Al2O3 Film Using Atomic Layer Deposition Method at Low Temperature as Encapsulation Layer for OLEDs
Related Author
Te LI
Zhen-fu WANG
Guo-jun LIU
Shun-hua WU
Xiao-yu ZHOU
Jing ZHANG
Feng-zhou ZHAO
Xin-bo CHU
Related Institution
State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
College of Physics and Electronic Engineering, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology
School of Optoelectronic Engineering, Changchun University of Science and Technology
College of Physics and Optoelectronic Engineering, Ludong University