GUO Wu-run, DOU Xing-ru, GE Zhi-li etc. Electrochemiluminescence Signal Amplification of Ru(bpy)<sub>3</sub><sup>2+</sup> Supramolecular Inclusion and Its Composite Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(5): 558-564
GUO Wu-run, DOU Xing-ru, GE Zhi-li etc. Electrochemiluminescence Signal Amplification of Ru(bpy)<sub>3</sub><sup>2+</sup> Supramolecular Inclusion and Its Composite Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(5): 558-564 DOI: 10.3788/fgxb20143505.0558.
Electrochemiluminescence Signal Amplification of Ru(bpy)32+ Supramolecular Inclusion and Its Composite Nanoparticles
Based on the property that cyclodextrin substances can form supramolecular inclusion
we studied the ability of electroneutral -cyclodextrin (-CD) or electronegative carboxymethyl--cyclodextrin (CM--CD) for forming supramolecular inclusion with electrochemiluminescence (ECL) active substance Ru(bpy)
3
2+
and their ECL enhancement. The results show that the supramolecular inclusions can enhance the ECL of Ru(bpy)
3
2+
. Compared with Ru(bpy)
3
2+
CM--CD increases 1.42 times while only 1.28 times for -CD. Using SiO
2
nanoparticles with negative surface charge as carriers
their absorption capacity for Ru(bpy)
3
2+
supramolecular inclusion was investigated. The results show that SiO
2
nanoparticle carriers have a stronger adsorption capacity for -CD supramolecular inclusion of Ru(bpy)
3
2+
. SiO
2
composite nanoparticles of -CD-Ru(bpy)
3
2+
supramolecular inclusion with srtongest ECL signal amplification were prepared in this paper.
关键词
Keywords
references
Miao W, Bard A J. Electrogenerated chemiluminescence. 77. DNA hybridization detection at high amplification with[Ru(bpy)3]2+-containing microspheres[J]. Anal. Chem., 2004, 76(18):5379-5386.[2] Gorman B A, Francis P S, Barnett N W. Tris(2, 2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence[J]. Analyst., 2006, 131(5):616-639.[3] Marquette C A, Blum L J. Electro-chemiluminescent biosensing[J]. Anal. Bioanal. Chem., 2008, 390(1):155-168.[4] Yang Y, Sun S G, Liu F Y, et al.Mechanism of Ru(bpy)32+ electrochemiluminescence and effective methods for enhancing its intensity[J]. Chemistry (化学通报), 2009, 72(9):768-775 (in Chinese).[5] Snyder S W, Buell S L, Demas J N, et al.Interactions of ruthenium(Ⅱ) photosensitizers with surfactant media[J]. J. Phys. Chem., 1989, 93(13):5265-5271.[6] Factor B, Muegge B, Richter M M, et al.Surfactant chain length effects on the light emission of tris(2, 2'-bipyridyl)ruthenium(Ⅱ)/tripropylamine electrogenerated chemiluminescence[J]. Anal. Chem., 2001, 73(19):462l-4624.[7] Zhou M, Roovers J, Robertson J P, et al.Multilabeling biomolecules at a single site. 1. Synthesis and characterization of a dendritic label for electrochemiluminescence assays[J]. Anal. Chem., 2003, 75(23):6708-6717.[8] Liang P, Dong L, Martin M T. Light emission from ruthenium-labeled penicillins signaling their hydrolysis by β-lactamase[J]. J. Am. Chem. Soc., 1996, 118(38):9198-9199.[9] Alonso M C S, Zamora L L, Calatayud J M. Determination of tyrosine through a FIA-direct chemiluminescence procedure[J]. Talanta, 2003, 60(2-3):369-376.[10] Liu B, Ren T, Zhang J R, et al.Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water[J]. Electrochem. Commun., 2007, 9(4):551-557.[11] Qian J, Zhou Z X, Cao X D, et al.Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels[J]. Anal. Chem. Acta, 2010, 665(1):32-38.[12] Yang X, Yuan R, Chai Y Q, et al.Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor[J]. Biosens. Bioelectron., 2010, 25(7):1851-1855.[13] Subramanian T S, Timothy T Y T, Dong K Y, et al.Functional and multifunctional nanoparticles for bioimaging and biosensing[J]. Langmuir, 2010, 26(14):11631-11641.[14] Sanjeevi S, Steven C. Optical bonding using silica nanoparticle sol-gel chemistry[J]. Nano Lett., 2007, 7(10):3031-3034.[15] Cao H M, Hu X Q, Hu C Y, et al.A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)32+/mesoporous silica nanospheres/nafion composite modified electrode[J]. Biosens. Bioelectron., 2013, 41:911-915.[16] Sardesai N P, Barron J C, Rusling J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins[J]. Anal. Chem., 2011, 83(17):6698-6703.[17] Yuan S R, Yuan R, Chai Y Q, et al.Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP[J]. Talanta, 2010, 82(4):1468-1471.[18] Cai Z M, Wu Y F, Hung Y H, et al.An electrochemiluminescence sensor based on a Ru(bpy)32+-silica-chitosan/nanogold composite film[J]. Talanta, 2012, 94(1):356-360.[19] Qian L, Yan X R. One-step synthesis of Ru(2, 2'-bipyridine)3Cl2-immobilized silica nanoparticles for use in electrogenerated chemiluminescence detection[J].Adv. Funct. Mater., 2007, 17(8):1353-1358.