WANG Lei, DONG Jie, HUANG Ping etc. Influence of Alkaline-earth Metal Ions on The Luminescence Properties of Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg, Ca, Sr, Ba),Ti<sup>4+</sup> Nanotube Arrays[J]. Chinese Journal of Luminescence, 2014,35(5): 553-557
WANG Lei, DONG Jie, HUANG Ping etc. Influence of Alkaline-earth Metal Ions on The Luminescence Properties of Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg, Ca, Sr, Ba),Ti<sup>4+</sup> Nanotube Arrays[J]. Chinese Journal of Luminescence, 2014,35(5): 553-557 DOI: 10.3788/fgxb20143505.0553.
Influence of Alkaline-earth Metal Ions on The Luminescence Properties of Y2O2S:Eu3+, M2+(M=Mg, Ca, Sr, Ba),Ti4+ Nanotube Arrays
nanoarrays were synthetized by sol-gel template method. The nanoarrays were characterized by powder X-ray diffraction (XRD)
scanning electron microscopy (SEM)
and photoluminescence (PL). The results show that Y
2
O
2
S:Eu
3+
Mg
2+
Ti
4+
nanotube arrays are highly ordered
regularly arranged and uniform. The doping ions do not change the crystal structure and the situation of emission peaks of phosphors
but have influence on the luminescence properties. Under 324 nm excitation
the strongest red-emission peaks at 626 nm assigned to
5
D
0
7
F
2
transition of Eu
3+
. The afterglow properties of phosphors doped with different divalent ions increase according to the order of Ba
2+
Ca
2+
Sr
2+
Mg
2+
. For the sample doped with Mg
2+
the decay time can last over 287 s (1 mcd/m
2
).
关键词
Keywords
references
Wen Z H, Ci S Q, Mao S, et al. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells[J].J. Power Sources, 2013, 234:100-106.[2] Chen H Y, Weng M H, Chang S J, et al. Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties[J].Ceram. Int., 2012, 38(1):125-130.[3] Cheng B C, Liu H J, Fang M, et al. Long-persistent phosphorescent SrAl2O4:Eu2+, Dy3+ nanotubes[J].Chem. Commun., 2009, 8:944-946.[4] Bockrath M, Liang W J, Bozovic D, et al. Resonant electron scattering by defects in single-walled carbon nanotubes[J].Science, 2001, 291(5502):283-285.[5] WangL X, Zhang L, Huang Y D, et al. Effects of Gd3+ and Lu3+ co-doping on the long afterglow properties of yellowish-orange phosphor Y2O2S:Ti4+, Mg2+[J].J. Lumin., 2009, 129(9):1032-1035.[6] Huang M L, Guo K, Man Z Y, et al. Morphology controllable synthesis of yttrium oxide-based phosphors from yttrium citrate precursors[J].J. Rare Earths, 2011, 29(9):830-836.[7] Grobelna B, Synak A, Bojarski P, et al. Synthesis and luminescence characteristics of Dy3+ ions in silica xerogels doped with Ln2-xDyx(WO4)3[J].Opt. Mater., 2013, 35(3):456-461.[8] Ogata H, Takeshita S, Isobe T, et al. Factors for determining photoluminescence properties of YBO3:Ce3+ phosphor prepared by hydrothermal method[J].Opt. Mater., 2011, 33(11):1820-1824.[9] Tan W M, Di Z G, Lu C H, et al. SiO2:Sm3+ micro-nano arrays prepared by sol-gel and template process[J].Chin. J. Inorg. Chem.(无机化学学报), 2010, 26(11):1949-1954(in Chinese).[10] Yan X C, Yu R B, Wang D, et al. Facile solvothermal synthesis of gear-shaped submicrostructured Y2O3:Eu3+ phosphor[J].Solid State Sci., 2011, 13(5):1060-1064.[11] Wang X X, Zhao J L, Du P, et al. The photoluminescence properties of Er3+-doped ZrO2 nanotube arrays prepared by anodization[J].Mater. Res. Bull., 2012, 47(11):3916-3919.[12] Zhao S H, Wang L L, Yang L, et al. Synthesis and luminescence properties of ZnO:Tb3+ nanotube arrays via electrodeposited method[J].Phys. B, 2010, 405(15):3200-3204.[13] Mao Y B, Huang J Y, Ostroumov R, et al. Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes[J].J. Phys. Chem. C, 2008, 112(7):2278-2285.[14] Lin T, Kellici S, Gong K, et al. Rapid automated materials synthesis instrument: Exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors[J].J. Comb. Chem., 2010, 12(3):383-392.[15] Jia G, Liu K, Zheng Y H, et al. highly uniform Gd(OH)3 and Gd2O3:Eu3+ nanotubes: Facile synthesis and luminescence properties[J].J. Phys. Chem. C, 2009, 113(15):6050-6055.[16] Mao S P, Liu Q, Gu M, et al. Long lasting phosphorescence of Gd2O2S:Eu, Ti, Mg nanorods via a hydrothermal routine[J].J. Alloys Compd., 2008, 465:367-374.[17] Huang Y Z, Chen L, Wu L M. Crystalline nanowires of Ln2O2S, Ln2O2S2, LnS2 (Ln=La, Nd), and La2O2S:Eu3+. Conversions via the boron-sulfur method that preserve shape[J].Cryst. Growth Des., 2008, 8(2):739-743.[18] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires[J].Angew. Chem. Int. Ed., 2001, 41(24):4790-4793.[19] Cui C E, Lei X, Huang P, et al. Influence of sulfuretted temperature on the luminescent properties of Y2O2S:Eu3+, Mg2+, Ti4+ nanoarrays[J].J. Lumin., 2013, 138:138-142.[20] Cui C E, Liu H, Huang P, et al. Influence of Eu3+ doping concentration on the luminescence properties of Y2O2S:Eu3+, Mg2+, Ti4+ nanoarrays via sol-gel template method[J].Opt. Mater., 2013, 36(2):495-499.[21] Hls J, Laamanen T, Lastusaari M, et al. Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+[J].Opt. Mater., 2009, 31(12):1791-1793.