MA Xiao-le, ZHUANG Wei-dong, GUO Han-jie etc. Influence of Ca for Sr Substitution on Luminescence Properties of Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub> :Ce<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(5): 519-525
MA Xiao-le, ZHUANG Wei-dong, GUO Han-jie etc. Influence of Ca for Sr Substitution on Luminescence Properties of Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub> :Ce<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(5): 519-525 DOI: 10.3788/fgxb20143505.0519.
Influence of Ca for Sr Substitution on Luminescence Properties of Sr3Al0.6Si0.4O4.4F0.6 :Ce3+ Phosphors
are studied as a function of the Ca/Sr ratio. First-principle calculations conform that Ca preferentially occupies 8
h
sites in the host structure. With the increasing of Ca/Sr ratio
the excitation and emission spectra of Sr
3-
x
Ca
x
Al
0.6
Si
0.4
O
4.4
F
0.6
:Ce
3+
phosphors show an obvious red shift
owing to the enhancement of crystal field. Under the excitation of 460 nm
the luminescence intensity of Ce
3+
doped SCASOF phosphors is enhanced with the increase of Ca/Sr ratio. On the contrary
the emission intensity decreases with the increase of Ca/Sr ratio under the excitation of 400 nm. Accordingly
we infer that the incorporation of Ca might change the occupation sites of luminescence center. This assumption is verified by investigating the photoluminescence spectra
quenching concentration and fluorescence lifetime. Moreover
the thermal quenching and chromaticity coordinates variation are also studied. Results show that Ce
3+
doped SCASOF phosphor has a great potentiality to be a near-UV or blue-convertible phosphor for white-light emitting diode.
关键词
Keywords
references
Feldmann C, Roming M, Trampert K. Polyol-mediated synthesis of nanoscale CaF2 and CaF2:Ce, Tb[J]. Small, 2006, 2(11):1248-1250.[2] Park S, Vogt T. Luminescent phosphors, based on rare earth substitutedoxyfluorides in the A(1)3-xA(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga[J]. J. Lumin., 2009, 129(9):952-957.[3] Chen W P, Liang H B, Han B, et al. Emitting-color tunable phosphors Sr3GaO4F:Ce3+ at uitraviolet light and low-voltage electron beam excitation[J]. J. Phys. Chem.C, 2009, 113(39):17194-17199.[4] Oskam K D, Kaspers K A, Meijerink A, et al. Luminesence of Sr3Al(Ga)O4F:Ce3+[J]. J. Lumin., 2002, 99(2):101-105.[5] Müller-Bunz H, Schleid T. La3F3[Si3O9]:Das erste fluoridsilicat aus dem ternären system LaF3/La2O3/SiO2[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1999, 625(8):1377-1383.[6] Xia Z, Liu R S. Tunableblue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs[J]. J. Phys. Chem. C, 2012, 116(29):15604-15609.[7] Zheng C Y, Liang L F, Zheng J J, et al. Luminescence characterization in the phosphors of NaLn4-x(SiO4)3F:xRE3+(Ln=La, Gd; RE=Tb, Dy, Sm, Tm)[J]. Chin. J. Lumin.(发光学报), 2013, 34(11):1462-1467 (in Chinese).[8] Sun J Y, Sun G C, Sun Y N. Luminescence properties and energy transfer investigations of Sr3AlO4F:Ce3+, Tb3+ phosphor[J]. Ceram. Int., 2014, 40(1):1723-1727.[9] Prodjosantoso A K, Kennedy B J, Vogt T, et al. Cation and anion ordering in the layered oxyfluorides Sr3-xAxAlO4F(A=Ba, Ca)[J]. J. Solid State Chem., 2003, 172(1):89-94.[10] Im W B, Brinkley S, Hu J, et al. Sr2.975-xBaxCe0.025AlO4F:A highly efficient green-emitting oxyfuoride phosphor for solid state white lighting[J]. Chem. Mater., 2010, 22(9):2842-2849.[11] Fang Y, Li Y Q, Qiu T, et al. Photoluminescence properties and local electronic structures of rare earth-activated Sr3AlO4F[J]. J. Alloys Compd., 2010, 496(1):614-619.[12] Vogt T, Woodward P M, Hunter B A, et al. Sr3MO4F(M=Al, Ga) — A new family of ordered oxyfluorides[J]. J. Solid State Chem., 1999, 144(1):228-231.[13] Im W B, George N, Kurzman J, et al. Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting[J]. Adv. Mater., 2011, 23(20):2300-2305.[14] Peng P, Zhuang W D, He H Q, et al. Synthesis and luminescent properties of Sr2.975-xCaxAlO4F:Ce3+0.025 phosphors[J]. J. Chin. Rare Earths Soc.(稀土学报), 2013, 4(31):414-420 (in Chinese).[15] Setlur A A, Radkov E V, Henderson C S, et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors[J]. Chem. Mater., 2010, 22(13):4076-4082.[16] Lee J S, Unithrattil S J, Won B I. Color-tunable binary solid-solution phosphor, (Sr3SiO5)1-x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+[J]. J. Alloys Compd., 2013, 555:297-303.[17] Ma X L, Zhuang W D, Guo H J, et al. Synthesis and luminescence properties of Sr3-z(AlxSi1-x)O5-xFx:zCe3+ phosphors[J]. J. Rare Earths, 2013, 31(7):665-668.[18] Jorgensen C K. Modern Aspects of Ligand Field Theory [M]. Amsterdam: North-Holland Publishing Company, 1971.[19] Wu J L, Gundiah G, Cheetham A K. Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting[J]. Chem. Phys. Lett., 2007, 441(4):250-254.[20] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides andchalcogenides[J]. Acta. Cryst.A, 1976, 32(5):751-767.[21] Blasse G, Grabmaier B C. Energy Transfer [M]. Berlin: Springer, 1994, 44:91-107.[22] Van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds[J]. J. Lumin., 1984, 29(5):1-9.