DU Xiao-lei, LYU Yan-wu, JIANG Chao. Photoluminescence Properties of WSe<sub>2</sub> Monolayer and Bilayer Nanosheets[J]. Chinese Journal of Luminescence, 2014,35(5): 513-518
DU Xiao-lei, LYU Yan-wu, JIANG Chao. Photoluminescence Properties of WSe<sub>2</sub> Monolayer and Bilayer Nanosheets[J]. Chinese Journal of Luminescence, 2014,35(5): 513-518 DOI: 10.3788/fgxb20143505.0513.
Photoluminescence Properties of WSe2 Monolayer and Bilayer Nanosheets
We systematically studied the low-temperature (12 K) photoluminescence (PL) spectroscopies of WSe
2
nanosheets prepared by vapor deposition technique. It is found that PL intensity monotonically decreases with the increasing of WSe
2
nanosheet layers. In particular
the PL intensity dramatically decreased when the thickness of WSe
2
films changed from monolayer to bilayer
which indicated that there is a direct-to-indirect transition in the band gap of WSe
2
nanosheets. Then we focused on the variable temperature photoluminescence of the bilayer structure. When the temperature increases from 12 K to 300 K
the temperature-dependent evolution of the direct transition energy (peak A) is approximately consistent with the common formula obeyed by bulk semiconductors
while the indirect transition energy (peak I) can only be described by a linear relationship with temperature. This indicates that peak A and peak I have different transition characteristics and these two transition characteristics coexist in bilayer WSe
2
simultaneously.
关键词
Keywords
references
Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene[J].Nat. Phys., 2011, 7(7):701-704.[2] Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic Dirac billiard in graphene quantum dots[J].Science, 2008, 320(5874):356-358.[3] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, et al. Identification of individual and few layers of WS2 using Raman spectroscopy[J].Sci. Rep., 2013, 3:1755-1-6.[4] Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J].Adv. Mater., 2012, 24(43):5832-5833.[5] Zeng H L, Liu G B, Dai J F, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides[J].Sci. Rep., 2013, 3:1608-1-4.[6] Zhao W J, Ghorannevis Z, Chu L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J].ACS Nano, 2013, 7(1):791-797.[7] Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te)[J].Phy. Rev. B, 2012, 85(3):033305-1-4.[8] Liu W, Kang J H, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors[J].Nano Lett., 2013, 13(5):1983-1990.[9] Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J].Nano Lett., 2012, 12(7):3788-3792.[10] Zhao W J, Ghorannevis Z, Kumar A K, et al. Lattice dynamics in mono and few layer sheets of WS2 and WSe2[J].Nanoscale, 2013, 5(20):9677-9683.[11] Kong D S, Wang H T, Cha J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J].Nano Lett., 2013, 13(3):1341-1347.[12] Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J].Opt. Exp., 2013, 21(4):4908-4916.[13] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J].Nano Lett., 2010, 10(4):1271-1275.[14] Voß D, Krüger P, Mazur A, et al. Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems[J].Phy. Rev. B, 1999, 60(20):14311-14317.[15] Beal A R, Knights J C, Liang W Y. Transmission spectra of some transition-metal dichalcogenides. Ⅱ. group VIA: Trigonal prismatic coordination[J].J. Phys. C, 1972, 5(24):3547-3550.[16] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J].Phy. Rev. B, 2012, 86(11):115409-1-6.[17] Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J].Phy. Rev. Lett., 2010, 105(13):136805-1-4.[18] Gutieérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers[J].Nano Lett., 2013, 13(8):3447-3454.[19] Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J].Nat. Commun., 2013, 4:1474-1-8.[20] Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J].Nat. Nanotechnol., 2012, 7(8):494-498.[21] Sahin H, Tongay S, Horzum S, et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2[J].Phy. Rev. B, 2013, 87(16):165409-1-6.[22] Bromley R A, Murray R B, Yoffe A D. The band structures of some transition-metal dichalcogenides: Ⅲ. Group VIA:Trigonal prism materials[J].J. Phys. C, 1972, 5:764-777.