DU Xiao-gang, WANG Hua, LIU Hui-hui etc. Investigation on The Direct Charge-recombination Mechanism of Ir(ppy)<sub>3</sub> in OLED[J]. Chinese Journal of Luminescence, 2014,35(4): 481-485
DU Xiao-gang, WANG Hua, LIU Hui-hui etc. Investigation on The Direct Charge-recombination Mechanism of Ir(ppy)<sub>3</sub> in OLED[J]. Chinese Journal of Luminescence, 2014,35(4): 481-485 DOI: 10.3788/fgxb20143504.0481.
Investigation on The Direct Charge-recombination Mechanism of Ir(ppy)3 in OLED
We present a simple efficient green phosphorescent device based on the direct charge-recombination mechanism in heavy doping Ir(ppy)
3
. The 4
4'
4"-Tris(carbazol-9-yl)triphenylamine (TCTA) and bis (4
6-difluorophenyl-pyridine)(picolinate) iridium(Ⅲ) (FIrpic) are selected as doping materials that doped into emitting layer respectively. The maximum current efficiency values of 43.1 cd/A and 51 cd/A are demonstrated in these devices
which increased by 50% and 79%
respectively. The results reveal a practical way to fabricate highly efficient bilayer organic devices.
关键词
Keywords
references
Baldo M A, OBrien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151-154. [2] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244):234-238. [3] Holmes R J, DAndrade B W, Forrest S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping[J]. Appl. Phys. Lett., 2003, 83(18):3818-3820. [4] Lee J, Chopra N, Eom S H, et al. Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices[J]. Appl. Phys. Lett., 2008, 93(12):123306-1-3. [5] Zheng Y, Wee Andrew T S, Troadec C. Temperature-dependent transition from injection-limited to space-charge-limited current in metal-organic diodes[J]. Appl. Phys. Lett., 2009, 95(14):143303-1-3. [6] Wang Q, Ding J Q, Ma D G, et al. Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off[J]. Appl. Phys. Lett., 2009, 94(10):103503-1-3. [7] Liu Z W, Helander M G, Wang Z B, et al. Efficient bilayer phosphorescent organic light-emitting diodes: Direct hole injection into triplet dopants[J]. Appl. Phys. Lett., 2009, 94(11):113305 -1-3. [8] Orselli E, Kottas G S, Konradsson A E, et al. Blue-emitting iridium complexes with substitued 1, 2, 4-triazole ligands:Synthesis, photophysics, and devices[J]. Inorg. Chem., 2007, 46(26):11082-11093. [9] Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light emitting device[J]. Appl. Phys. Lett., 2001, 90(10):5048-5051. [10] Baldo M A, Adachi C, Forrest S R. Transient analysis of triplet-triplet annihilation. Ⅱ. Transient analysis of organic electrophosphorescence[J]. Phys. Rev. B, 2000, 62(16):10967-10977. [11] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Phys. Rev. B, 2007, 75(12):125328-1-14. [12] Chen F C, Chien S C, Chen Y S. Single-layer triplet white polymer light-emitting diodes incorporating polymer oxides:Effect of charge trapping at phosphorescent dopants[J]. Appl. Phys. Lett., 2009, 94(4):043306-1-3. [13] Wang Q, Ding J, Ma D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission-mechanism analysis[J]. Adv. Funct. Mater., 2009, 19(1):84-95. [14] Shih P I, Shu C F, Tung Y L, et al. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials[J]. Appl. Phys. Lett., 2006, 88(25):251110-1-3. [15] Kondakov D Y, Sandifer J R, Tang C W, et al. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss[J]. J. Appl. Phys., 2003, 93(2):1108-1119. [16] Zhao Y B, Zhu L P, Chen J S, et al. Improving color stability of blue/orange complementary white OLEDs by using single-host double-emissive layer structure: Comprehensive experimental investigation into the device working mechanism[J]. Org. Electron., 2012, 13(8):1340-1348.
A Y-type Delayed Fluorescence Emitter for Blue and Green OLEDs
Fabrication of Al2O3/PMMA Laminates and Its Barrier Performance in OLED Encapsulation
Design, Synthesis and Properties of D-π-A-π-D Type Organic Red Light Luminogens
Relationship Between π-conjugated Bridge and Photophysical Properties of Blue Light-emitting Fluorescent Materials with Twisting A-π-D-π-A Configuration
Photophysical and Excited State Properties of Blue Fluorescent Material with High Exciton Utilizing Efficiency
Related Author
SUN Jing
FAN Zhijie
DU Jikuan
DONG Hailiang
WANG Hua
Xiong-tu ZHOU
Gui-xiong CHEN
Fan SUN
Related Institution
Zheda Institute of Advanced Materials and Chemical Engineering
Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
College of Physics and Information Engineering, Fuzhou University