CAO Pei-jiang, PENG Shuang-jiao, HAN Shun etc. Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol[J]. Chinese Journal of Luminescence, 2014,35(4): 460-464
CAO Pei-jiang, PENG Shuang-jiao, HAN Shun etc. Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol[J]. Chinese Journal of Luminescence, 2014,35(4): 460-464 DOI: 10.3788/fgxb20143504.0460.
Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol
micro tetrapods and micro spheres of ZnO were fabricated on the internal surface of quartz boat and the surface of single crystal silicon by chemical vapor deposition method
and the corresponding gas sensors were made. The following testing results from scanning electron microscope
the gas sensor testing instrument were obtained. The as grown ZnO with nano/micro structures have a different size from 200 nm to 100 m. The optimized working currents range of these sensors are 120 ~ 130 mA. The gas sensor fabricated by micro tetrapods of ZnO exhibits the best sensitivity property and the corresponding sensitivity is up to 127. The highest content of V
O
defect exists in micro tetrapods of ZnO. Combining the gas sensor testing with PL spectra results
we attribute the most important factor affecting the gas sensor property to the content of V
O
defect in these materials.
关键词
Keywords
references
Kong Y C, Yu D P, Feng S Q, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Appl. Phys. Lett., 2001, 78(4):407-409. [2] Xu W Z, Ye Z Z, Ma D W, et al. Quasi-aligned ZnO nanotubes grown on Si substrates[J]. Appl. Phys. Lett., 2005, 87(9):093110-1-3. [3] Heath J R, Kuekes P J, Snider G S, et al. A defect-tolerant computer architecture: Opportunities for nanotechnology[J]. Science, 1998, 280(5370):1716-1721. [4] Kong X Y, Ding Y, Yang R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303:1348-1351. [5] Lao J Y, Huang J Y, Ren Z F, et al. ZnO nanobridges and nanonails[J]. Nano Lett., 2003, 3(2):235-238. [6] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts[J]. Nano Lett., 2003, 3(12):1625-1631. [7] Yang P D, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties[J]. J. Adv. Funct. Mater., 2002, 12(5):323-331. [8] Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets[J]. J. Phys. Chem. B, 2002, 106(5):902-904. [9] Zhang J, Sun L D, Liao C S, et al. ZnO microcrystals with diverse morphologies[J]. Chin. J. Inorg. Chem.(无机化学学报), 2002, 18(1):72-74 (in Chinese). [10] Li C C, Du Z F, Li L M, et al. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature[J]. Appl. Phys. Lett., 2007, 91(3):032101-1-3. [11] Zhang Y, Xu J Q, Xiang Q, et al. Brush-like hierarchical ZnO nanostructures:Synthesis, photoluminescence and gas sensor properties[J]. J. Phys. Chem. C, 2009, 113(9):3430-3435. [12] Xu J Q, Pan Q Y, Tian Z Z, et al. Grain size control and gas properties of ZnO gas sensors[J]. Sens. Actuat. B, 2000, 66(1-3):277-279. [13] Han N, Wu X F, Chai L Y, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors[J]. Sens. Actuat. B, 2010, 150(1):230-238. [14] Ke L, Lai S C, Ye J D, et al. Point defects analysis of zinc oxide thin films annealed at different temperatures with photoluminescence, Hall mobility, and low frequency noise[J]. J. Appl. Phys., 2010, 108(8):084502-1-6. [15] Ton-That C, Weston L, Phillips M R. Characteristics of point defects in the green luminescence from Zn-and O-rich ZnO[J]. Phys. Rev. B, 2012, 86(11):115205-1-5. [16] Leunga Y H, Chena X Y, Ng A M C, et al. Green emission in ZnO nanostructures-examination of the roles of oxygen and zinc vacancies[J]. Appl. Surf. Sci., 2013, 271:202-209. [17] Wang C X, Yin L W, Zhang L Y, et al. Metal oxide gas sensors: Sensitivity and influencing factors[J]. Sensors, 2010, 10(3):2088-2106.