PEI Jian-feng, WU Qing-long, DE Ge-ji-hu. Synthesis and Up-conversion Luminescence Properties of CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>,<em>y</em>Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(4): 448-453
PEI Jian-feng, WU Qing-long, DE Ge-ji-hu. Synthesis and Up-conversion Luminescence Properties of CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>,<em>y</em>Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(4): 448-453 DOI: 10.3788/fgxb20143504.0448.
Synthesis and Up-conversion Luminescence Properties of CaF2:xYb3+,yEr3+ Nanoparticles
=0.01~0.08) nanoparticles were synthesized by the hydrothermal method. The crystal structure
morphology and up-conversion spectra of the samples were characterized using X-ray powder diffractometer
transmission electron microscope and fluorescence spectrophotometer with single-wavelength diode laser of 980 nm. The samples are cubic phase and spherical shape with an average size of 12 nm. The influence of Yb
3+
and Er
3+
concentration on the up-conversion luminescence of the CaF
2
:
x
Yb
3+
y
Er
3+
(
x
=0.1~0.8
y
=0.01~0.08) nanoparticles were systematically investigated and discussed. It is found that the optimum mole fraction of the sensitizer Yb
3+
is 20% and the activator Er
3+
is 6%. At this point
the ratio of the green and red light intensity is the largest.
关键词
Keywords
references
Boyer D, Mahiou R. Powders and coatings of LiYF4:Eu3+ obtained via an original way based on the sol-gel process[J]. Chem. Mater., 2004, 16(13):2518-2521. [2] De G J H, Si Q, Meng G L B Q. Solvothermal synthesis and white upconversion luminescence properties of La0.789Yb0.20-Ho0.001Tm0.01F3 nanocubes[J]. Chem. J. Chin. Univ.(高等学校化学学报), 2011, 8(8):1692-1696 (in Chinese). [3] Li N N, An Z Y, Gao Y M, et al. Preparation and properties of nano-sized SrMoO4:Yb3+/Er3+ powder upconversion luminescence[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):1055-1058 (in Chinese). [4] Liang L F, Zhuang J L, Wu H, et al. White upconversion emission of hydrothermally synthesized hexagonal NaYF4:Er3+/Tm3+[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese). [5] Auzel F. Upconversion and anti-Stokes processes with fand ions in solids[J]. Chem. Rev., 2004, 104(1):139-173. [6] Zhou J, Liu Z, Li F Y. Upconversion nanophosphors for small-animal imaging[J]. Chem. Soc. Rev., 2012, 41(3):1323-1349. [7] Liu Y, Chen M, Cao T Y, et al. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury[J]. J. Am. Chem. Soc., 2013, 135(26):9869-9876. [8] Mahalingam V, Vetroni F, Naccache R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals:Multiple luminescence spanning the UV to NIR regions via low-energy excitation[J]. Adv. Mater., 2009, 21(40):4025-4028. [9] Li P, Peng Q, Li Y D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals[J]. Adv. Mater., 2009, 21(19):1945-1948. [10] Wang G F, Peng Q, Li Y D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(40):14200-14201. [11] Xie T, Li S, Li Y D, et al. Monodisperse BaF2 nanocrystals: Phases, size transitions, and self-assembly[J]. Angew. Chem. Int. Ed., 2009, 48(1):196-200. [12] Wang X, Zhuang J, Li Y D, et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals[J]. Inorg. Chem., 2006, 45(17):6661-6665. [13] Du Y P, Sun X, Zhang Y W, et al. Uniform alkaline earth fluoride nanocrystals with diverse shapes grown from thermolysis of metal trifluoroacetates in hot surfactant solutions[J]. Crystal Growth & Design, 2009, 9(4):2013-2019. [14] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. J. Am. Chem. Soc., 2005, 127(10):3260-3261. [15] Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436. [16] Dong N N, Pedroni M, Piccinelli F, et al. NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging[J]. ACS Nano, 2011, 5(11):8665-8671. [17] Glaspell G, Anderson J, Wilkins J R, et al. Vapor phase synthesis of upconverting Y2O3 nanocrystals doped with Yb3+, Er3+, Ho3+, and Tm3+ to generate red, green, blue, and white light[J]. J. Phys. Chem. C, 2008, 112(30):11527-11531. [18] Quan Z, Yang D, Yang P, et al. Uniform colloidal alkaline earth metal fluoride nanocrystals: Nonhydrolytic synthesis and luminescence properties[J]. Inorg. Chem., 2008, 47(20):9509-9517. [19] Pang M, Liu D P, Lei Y Q, et al. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process[J]. Inorg. Chem., 2011, 50(12):5327-5329. [20] Zhang X M, Quan Z W, Yang J, et al. Solvothermal synthesis of well-dispersed MF2(M=Ca, Sr, Ba) nanocrystals and their optical properties[J]. Nanotechnol., 2008, 19(7):075603-1-5. [21] Polinau M, Gamelin D R, Lthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev., 2000, 61(5):3337-3346.
Up-conversion Luminescence of Glass Ceramics Co-doped with Yb3+,Er3+
Preparation, Luminescence Mechanism and Temperature Sensing Properties of KYb2F7∶2% Er3+
Advances in Luminescence Thermal Enhancement of Rare Earth Activated Phosphors
Up-conversion Luminescence and Temperature Sensing Performance of Novel Ba3In(PO4)3∶Yb3+, Ho3+ Phosphor
Temperature Sensing Characteristics of Y7O6F9∶Er,Yb/PAN Composite Fibers Based on Up-conversion Luminescence
Related Author
YANG Kui-sheng
LIANG Hai-lian
ZHANG Xi-yan
LI Xinyun
DAI Mengmeng
FU Zuoling
CHEN Rui
LIU Rui
Related Institution
Faculty of Materials and Chemical Engineering, Changchun University of Science and Technology
College of Physics, Jilin University
Fujian College, University of Chinese Academy of Sciences
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences