浏览全部资源
扫码关注微信
安徽工业大学 冶金与资源学院,安徽 马鞍山,243002
Received:16 October 2013,
Revised:03 February 2014,
Published:03 April 2014
移动端阅览
童碧海, 刘远远, 马鹏等. 含环金属铱配合物高分子材料的制备及其氧气传感性能[J]. 发光学报, 2014,35(4): 442-447
TONG Bi-hai, LIU Yuan-yuan, MA Peng etc. Polymeric Material Containing Cyclometalated Iridium Complex with Its Oxygen Sensing Properties[J]. Chinese Journal of Luminescence, 2014,35(4): 442-447
童碧海, 刘远远, 马鹏等. 含环金属铱配合物高分子材料的制备及其氧气传感性能[J]. 发光学报, 2014,35(4): 442-447 DOI: 10.3788/fgxb20143504.0442.
TONG Bi-hai, LIU Yuan-yuan, MA Peng etc. Polymeric Material Containing Cyclometalated Iridium Complex with Its Oxygen Sensing Properties[J]. Chinese Journal of Luminescence, 2014,35(4): 442-447 DOI: 10.3788/fgxb20143504.0442.
通过含乙烯键的三联吡啶单体与甲基丙烯甲酯单体的共聚,制备了含配体的线性共聚物(P(MMA-
co
-TPY))。该共聚物继续与环金属铱二氯桥中间体反应,最终制备出含环金属铱配合物的高分子材料P(MMA-
co
-TPYIr)。用傅里叶变换红外光谱(FTIR)表征了材料的结构,并用紫外-可见光谱仪、荧光光谱仪研究了材料的光物理性能,最后研究了材料在溶液中的氧气传感性能。结果表明,环金属铱配合物已共价连接到高分子链上,固态下为纯红光发射,波长为638 nm,量子效率为0.035。该材料表现出了较好的氧气传感性能,并且在DMF中的效果最好,纯氮气和纯氧气氛围下的发光强度比为6,氧气检测限能达到0.34%。
A linear copolymer (P(MMA-
co
-TPY)) containing ligands was prepared by the copolymerizing terpyridine monomer and methyl methyl acrylic monomer. Then the copolymer reacted with IrⅢ-chloro-bridged intermediate reaction
a polymeric material (P(MMA-
co
-TPYIr)) containing cyclometalated iridium complex was eventually obtained. Ring metal iridium complexes containing polymer P(MMA-
co
-TPYIr). The material was characterized by Fourier transform infrared spectra (FTIR)
its optical properties and oxygen sensor performance were studied by ultraviolet-visible spectrometer
fluorescence spectrometer. The results show that the cyclometalated iridium complex groups have been covalently connected to the polymer chain
the luminescence wavelength is 638 nm in solid state which belonging to pure red light emission
and the quantum efficiency of 0.035. The material shows good oxygen sensor performance especially in DMF
the luminous intensity ratio is 6 in pure nitrogen and pure oxygen atmosphere. Its oxygen detection limit could reach 0.34%.
Fernandez-Sanchez J F, Roth T, Cannas R, et al. Novel oxygen sensitive complexes for optical oxygen sensing[J]. Talanta, 2007, 71(1):242-250. [2] DeRosa M C, Hodgson D J, Enright G D, et al. Iridium luminophore complexes for unimolecular oxygen sensors[J]. J. Am. Chem. Soc., 2004, 126(24):7619-7626. [3] Amao Y, Ishikawa Y, Okura I, et al. Green luminescent iridium(Ⅲ) complex immobilized in fluoropolymer film as optical oxygen-sensing material[J]. Anal. Chim. Acta, 2001, 445(1):177-182. [4] Fernandez-Sanchez J F, Cannas R, Spichiger S, et al. Novel nanostructured materials to develop oxygen-sensitive films for optical sensors[J]. Anal. Chim. Acta, 2006, 566(2):271-282. [5] Toro M M S, Fernandez-Sanchez J F, Baranoff E, et al. Novel luminescent Ir(Ⅲ) dyes for developing highly sensitive oxygen sensing films[J]. Talanta, 2010, 82(2):620-628. [6] Borisov S M, Klimant I. Luminescent nanobeads for optical sensing and imaging of dissolved oxygen[J]. Microchim. Acta, 2009, 164(1-2):7-15. [7] Marin-suarez M, Curchod B F E, Tavernelli I, et al. Nanocomposites containg neutral blue emitting cyclometalated iridium(Ⅲ) emitters for oxygen sensing[J]. Chem. Mater., 2012, 24(12):2330-2338. [8] Xie Z G, Ma L Q, Dekrafft K E, et al. Porous phosphorescent coordination polymers for oxygen sensing[J]. J. Am. Chem. Soc., 2010, 132(3):922-923. [9] Huynh L, Wang Z, Yang J, et al. Evaluation of phosphorescent rhenium and iridium complexes in polythionylphosphazene films for oxygen sensor applications[J]. Chem. Mater., 2005, 17(19):4765-4773. [10] Medina-Castillo A L, Fernandez-Sanchez J F, Klein C, et al. Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films[J]. Analyst, 2007, 132:929-936. [11] Borisov S M, Klimant I. Ultrabright oxygen optodes based on cyclometalated iridium(Ⅲ) coumarin complexes[J]. Anal. Chem., 2007, 79(19):7501-7509. [12] Yoshihara T, Yamaguchi Y, Hosaka M, et al. Ratiometric molecular sensor for monitoring oxygen levels in living cells[J]. Angew. Chem. Int. Ed., 2012, 51(17):4148-4151. [13] Kose M E, Crutchley R J, Derosa M C, et al. Morphology and oxygen sensor response of luminescent Ir-labeled poly(dimethylsiloxane)/polystyrene polymer blend films[J]. Langmuir, 2005, 21(18):8255-8262. [14] Derosa M C, Mosher P J, Yap G P A, et al. Synthesis, characterization, and evaluation of as a polymer-bound oxygen sensor[J]. Inorg. Chem., 2003, 42(16):4864-4872. [15] Andres P R, Hofmeier H, Lohmeijer B G G, et al. Synthesis of 4'-functionalized 2, 2':6', 2"-terpyridines via the pyridone route: Symmetric and asymmetric bis-complex formation[J]. Synthesis, 2003, 18:2865-2871. [16] Tong B H, Mei Q B, Li Z W, et al. Investigation on the electrochemiluminescence properties of a series of cyclometalated Iridium(Ⅲ) complexes based on 2-phenylquinoline derivatives[J]. Acta Chim. Sinica (化学学报), 2012, 70(23):2451-2456 (in Chinese). [17] Zhao Q, Liu S J, Li F Y, et al. Multisignaling detection of Hg2+ based on a phosphorescent iridium(Ⅲ) complex[J]. Dalton Trans., 2008, 29:3836-3840. [18] Van Houten J, Watts R J. Temperature dependence of the photophysical and photochemical properties of the tris (2, 2'-bipyridyl) ruthenium (Ⅱ) ion in aqueous solution[J]. J. Am. Chem. Soc., 1976, 98(15):4853-4858. [19] Achatz D E, Meier R J, Fischer L H, et al. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(1):260-263.
0
Views
236
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution