LIU Pan, YIN Hai-rong, GUO Hong-wei etc. Effect of Optical Basicity on Luminescence Properties of Tb<sup>3+</sup> Doped Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> Glasses[J]. Chinese Journal of Luminescence, 2014,35(4): 413-419
LIU Pan, YIN Hai-rong, GUO Hong-wei etc. Effect of Optical Basicity on Luminescence Properties of Tb<sup>3+</sup> Doped Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> Glasses[J]. Chinese Journal of Luminescence, 2014,35(4): 413-419 DOI: 10.3788/fgxb20143504.0413.
Effect of Optical Basicity on Luminescence Properties of Tb3+ Doped Bi2O3-B2O3 Glasses
luminescence properties and structure were investigated by excitation
emission and Raman spectra. Energy level structures of Tb
3+
Bi
3+
and Bi
2+
ions were plotted for the excitation and energy transfer routes. The results show that Tb
3+
doped Bi
2
O
3
-B
2
O
3
glasses consist of [BO
3
]
[BiO
3
]
[BO
4
]
and [BiO
6
] together as basic structural groups
and its structure turn looses as the optical basicity increasing from 0.63 to 0.93. Based on energy matching condition
571 nm emission ascribed to
2
P
3/2(2)
2
P
1/2
transition of Bi
2+
reduces from Bi
3+
ions at high optical basicity of glasses
which decreases the transition of Bi
3+
Tb
3+
. The luminescent properties of Tb
3+
doped Bi
2
O
3
-B
2
O
3
glasses are quite sensitive to optical basicity
the luminescence color turns to white from yellow-green with the optical basicity increasing.
关键词
Keywords
references
Sindhu S, Sanghi S, Agarwal A, et al. Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MOBi2O3B2O3(M=Ba, Sr) glasses[J]. Mater. Chem. Phys., 2005, 90(1):83-89. [2] Insitipong S, Kaewkhao J, Ratana T, et al. Optical and structural investigation of bismuth borate glasses doped with Dy3+[J]. Procedia Engineer, 2011, 8:195-199. [3] Yousef E S, El-Adawy A, El-Kheshkhany N. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth borate system[J]. Solid State Commun., 2006, 139(1):108-113. [4] Cheng Y, Xiao H N, Guo W M, et al. Structure and crystallization kinetics of Bi2O3-B2O3 glasses[J]. Thermochim. Acta, 2006, 444(2):173-178. [5] Komatsu T, Ito N, Honma T, et al. Electronic polarizability and its temperature dependence of Bi2O3-B2O3 glasses[J]. J. Non-Cryst. Solids, 2010, 356(44-49):2310-2314. [6] Park J M, Kim H J, Kim S, et al. Luminescence property of rare-earth doped bismuth-borate glasses[J]. Procedia Engineer, 2012, 32:855-861. [7] Hughes M A, Suzuki T, Ohishi Y. Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass[J]. Opt. Mater., 2010, 32(9):1028-1034. [8] Ouedraogo K, Topsu S, Gayhmouni J, et al. Accurate ellipsometric magnetic-field sensor used to align the watt balance magnetic circuit of the French National Metrology Institute[J]. Sens. Actuat. A: Phys., 2012, 175:9-14. [9] Rambabu U, Munirathnam N, Chatterjee S, et al. Influence of Bi3+ as a sensitizer and SiO2 shell coating as a protecting layer towards the enhancement of red emission in LnVO4:Bi3+, Eu3+ @SiO2 (Ln=Gd, Y and Gd/Y) powder phosphors for optical display devices[J]. Ceram. Int., 2013, 39(5):4801-4811. [10] Duffy J A. Redox equilibria in glass[J]. J. Non-Cryst. Solids, 1996, 196:45-50. [11] Ren J J, Yang L Y, Qiu J R, et al. Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses[J]. Solid State Commun., 2006, 140(1):38-41. [12] Zhao S L, Xin F X, Xu S Q, et al. Luminescence properties and energy transfer of Eu/Tb ions codoped aluminoborosilicate glasses[J]. J. Non-Cryst. Solids, 2011, 357(11):2424-2427. [13] Pal Singh G, Kaur P, Kaur S, et al. Investigation of structural, physical and optical properties of CeO2-Bi2O3-B2O3 glasses[J]. Physica B, 2012, 407(21):4168-4172. [14] Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. Ⅰ[J]. J. Appl. Phys., 1996, 79(3):1736-1740. [15] Zhao X Y, Wang X L, Lin H, et al. Electronic polarizability and optical basicity of lanthanide oxides[J]. Physica B, 2007, 392(1-2):132-136. [16] Stefan R, Pascuta P, Popa A, et al. XRD and EPR structural investigation of some zinc borate glasses doped with iron ions[J]. J. Phys. Chem. Solids, 2012, 73(2):221-226. [17] Vinaya Teja P M, Rajyasree C, Murali Krishna S B, et al. Effect of some VA group modifiers on R2O3(R=Sb, Bi)-ZnF2-GeO2 glasses doped with CuO by means of spectroscopic and dielectric investigations[J]. Mater. Chem. Phys., 2012, 133(1):239-248. [18] Pal I, Sanghi S, Agarwal A, et al. Spectroscopic and structural investigations of Er3+ doped zinc bismuth borate glasses[J]. Mater. Chem. Phys., 2012, 133(1):151-158. [19] Bale S, Rahman S, Awasthi A M, et al. Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses[J]. J. Alloys Compd., 2008, 460(1-2):699-703. [20] Baia L, Stefan R, Kiefer W, et al. Structural investigations of copper doped B2O3-Bi2O3 glasses with high bismuth oxide content[J]. J. Non-Cryst. Solids, 2002, 303(3):379-386. [21] He F, Wang J, Deng D W. Effect of Bi2O3 on structure and wetting studies of Bi2O3-ZnO-B2O3 glasses[J]. J. Alloys Compd., 2011, 509(21):6332-6336. [22] Suresh S, Gayathri Pavani P, Chandra Mouli V. ESR, optical absorption, IR and Raman studies of xTeO2+(70-x) B2O3+ 5TiO2+24R2O:1CuO(x=10, 35 and 60mol%; R=Li, Na and K) quaternary glass system[J]. Mater. Res. Bull., 2012, 47(3):724-731. [23] Yang C H, Yuan J H, Zeng X Y. Comparison and analysis of laser raman spectra of common drinking water[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2007, 27(10):2053-2056 (in Chinese). [24] Subhadra M, Kistaiah P. Infrared and Raman spectroscopic studies of alkali bismuth borate glasses: Evidence of mixed alkali effect[J]. Vib. Spectrosc., 2012, 62:23-27. [25] Hamstra M A, Folkerts H F, Blasse G. Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates[J]. J. Mater. Chem., 1994, 4(8):1349-1350. [26] Wang X, Zhou S F, Bao J X. Infrared broadband emission of bismuth-doped RO-B2O3(R=Ca, Sr, Ba) glasses[J]. J. Wuhan Univ. Technol., 2007(S1):841-843. [27] Blasse G, Bril A. Investigations on Bi3+-activated phosphors[J]. J. Chem. Phys., 1968, 48:217-222. [28] Xu B B, Hao J, Zhou S, et al. Ultra-broadband infrared luminescence of Bi-doped thin-films for integrated optics[J]. Opt. Exp., 2013, 21(15):18532-18537. [29] Chen D, Yu Y L, Huang P, et al. Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals[J]. Appl. Phys. Lett., 2009, 94(4):041909-1-3. [30] Yang L, Li Y, Xiao Y H, et al. Synthesis of Tb3+-doped ZnO nanowire arrays through a facile sol-gel template approach[J]. Chem. Lett., 2005, 34(6):828-829. [31] Ratnakaram Y C, Vijaya Kumar A, Tirupathi Naidu D, et al. Absorption and emission properties of Nd3+ in lithium cesium mixed alkali borate glasses[J]. Solid State Commun., 2005, 136(1):45-50. [32] Zhang L L, Peng M Y, Dong G P, et al. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser[J]. Opt. Mater., 2012, 34(7):1202-1207. [33] Meng X G, Qiu J R, Peng M Y, et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass[J]. Opt. Exp., 2005, 13(5):1628-1634.