WANG Xin-ze, GAO Hong-jian, LIU Jing etc. Up-conversion for Different Substrate by Ball Milling Method[J]. Chinese Journal of Luminescence, 2014,35(3): 312-316
WANG Xin-ze, GAO Hong-jian, LIU Jing etc. Up-conversion for Different Substrate by Ball Milling Method[J]. Chinese Journal of Luminescence, 2014,35(3): 312-316 DOI: 10.3788/fgxb20143503.0312.
Up-conversion for Different Substrate by Ball Milling Method
Up-conversion luminescence powders were synthesized by high-energy ball-milling (HEB) method and the conventional solid-state reaction (SSR) method. All the phosphors were sintered at 1 100 ℃ for 2 h. X-ray powder diffraction (XRD) shows that the HEB samples have higher phase purity and crystallinity compared with the SSR samples. Excited by 980 nm laser
the HEB samples show higher photoluminescence (PL) intensity. Tm
3+
Yb
3+
co-doped sample emits yellow light
Er
3+
Yb
3+
co-doped sample emits green light
and the luminous intensity of Tm
3+
Er
3+
Yb
3+
co-doped sample is weaken and the color is tunable.
关键词
Keywords
references
Mahalingam V, Vetrone F, Naccache R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation[J]. Adv. Mater., 2009, 21(40):4025-4028. [2] Mahalingam V, Mangiarini F, Vetrone F, et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals[J]. J. Phys. Chem. C, 2008, 112(46):17745-17749. [3] Wang R, Liu L, Sun J, et al. Blue upconversion luminescence in 12CaO7Al2O3:Tm3+/Yb3+ polycrystals[J]. Opt. Commun., 2012, 285(6):957-959. [4] Wang J S, Vogel E M, Snitzer E, et al. 1.3 m emission of neodymium and praseodymium in tellurite-based glasses[J]. J. Non-cryst. Solids, 1994, 178:109-113. [5] Luo X, Cao W. Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor[J]. Mater. Lett., 2007, 61(17):3696-3700. [6] Chen D, Wang Y, Bao F, et al. Broadband near-infrared emission from Tm/Er co-doped nanostructured glass ceramics[J]. J. Appl. Phys., 2007, 101(11):113511-1-6. [7] Shah B K, Neckers D C, Shi J, et al. Anthanthrene derivatives as blue emitting materials for organic light-emitting diode applications[J]. Chem. Mater., 2006, 18(3):603-608. [8] O'Farrell N, Houlton A, Horrocks B R. Silicon nanoparticles:Applications in cell biology and medicine[J]. Int. J. Nanomed., 2006, 1(4):451-472. [9] Zhang L, Zhu Y J. Microwave hydrothermal synthesis of hexagonal NaYF4 and Yb3+, Er3+-doped NaYF4 microtubes[J]. J. Inorg. Mater.(无机材料学报), 2009, 24(3):553-558 (in Chinese). [10] Liu Z, Yu A, Lee J Y. Cycle life improvement of LiMn2O4 cathode in rechargeable lithium batteries[J]. J.Power Sources, 1998, 74(2):228-233. [11] Obrovac M N, Mao O, Dahn J R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis[J]. Solid State Ionics, 1998, 112(1):9-19. [12] Chen H, Wang J M, Pan T, et al. Effects of high-energy ball milling (HEBM) on the structure and electrochemical performance of nickel hydroxide[J]. Int. J. Hydrogen Energy, 2003, 28(1):119-124. [13] Yang H K, Jeong J H. Synthesis, crystal growth, and photoluminescence properties of YAG:Eu3+ phosphors by high-energy ball milling and solid-state reaction[J]. J. Phys. Chem. C, 2009, 114(1):226-230. [14] Liang L F, Zhuang J L, Wu H, et al. White up-conversion emission of hydrothermally synthesized hexagonal NaYbF4:Er3+/Tm3+[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese). [15] Zhang P X, Hang Y, Gong J, et al. Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal[J]. J. Cryst. Growth, 2012, 364:57-61. [16] Hatanaka T, Nakamura K, Taniuchi T, et al. Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3[J]. Opt. Lett., 2000, 25(9):651-653. [17] Imbrock J, Wevering S, Buse K, et al. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses[J]. J. Opt. Sci. Am. B, 1999, 16(9):1392-1397. [28] Wang Y, Jiang Y J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3[J]. Opt. Mater., 2003, 23(1-2):403-408.