WANG Xu-jie, FANG Fang, CHU Xue-ying etc. Flower-like Self-supporting Ag-doped ZnO Nanoarrays and Their Optical Properties[J]. Chinese Journal of Luminescence, 2014,35(3): 306-311
WANG Xu-jie, FANG Fang, CHU Xue-ying etc. Flower-like Self-supporting Ag-doped ZnO Nanoarrays and Their Optical Properties[J]. Chinese Journal of Luminescence, 2014,35(3): 306-311 DOI: 10.3788/fgxb20143503.0306.
Flower-like Self-supporting Ag-doped ZnO Nanoarrays and Their Optical Properties
By using a simple and mild two-step water-bath method
a large area of flower-like self-supporting Ag-doped ZnO nanoarrays were fabricated. Field emission scanning electron microscopy (FESEM)
energy dispersive X-ray spectrometer (EDS)
X-ray diffraction (XRD)
room temperature and temperature depend photoluminescence (PL) were used to characterize the morphology
crystalline quality and optical properties of the samples. The emission related to acceptor located at 3.360 eV and 3.315 eV can be observed at low temperature (85 K)
and the theoretical calculated acceptor binding energy is 118 meV. In temperature depend PL spectra
the calculated values of FA emission agree well with the theoretical model.
关键词
Keywords
references
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. [2] Fang F, Zhao D X, Li B H, et al. Surface reconstruction of ZnO nanowire arrays via solvent-evaporation-induced self-assembly[J]. Appl. Surf. Sci., 2011, 257(8):3374-3375. [3] Alammar T, Mudring A V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid[J]. Mater. Lett., 2009, 63(9-10):732-733. [4] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nat. Mater., 2005, 4(6):455-459. [5] Fang F, Zhao D X, Li B H, et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification[J]. Appl. Phys. Lett., 2008, 93(23):233115-1-3. [6] Liu K W, Sakurai M, Aono M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010, 10(9):8604-8634. [7] Pol F V D. Thin-film ZnO-properties and applications[J]. Ceram. Bull., 1990, 69(12):1959-1965. [8] Wardle M G, Goss J P, Briddon P R. Theory of Li in ZnO: A limitation for Li-based p-type doping[J]. Phys. Rev. B, 2005, 71(15):15205-1-10. [9] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B, 2002, 66(7):073202-1-3. [10] Yan Y, Al Jassim M M, Wei S H. Doping of ZnO by group-IB elements[J]. Appl. Phys. Lett., 2006, 89(18):181912-1-3. [11] Kang H S, Ahn B D, Kim J H, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant[J]. Appl. Phys. Lett., 2006, 88(20):202108-1-3. [12] Thomas M A, Cui J B. Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO[J]. J. Appl. Phys., 2009, 105(9):093533-1-5.. [13] Wang G P, Chu S, Zhan N, et al. Synthesis and characterization of Ag-doped p-type ZnO nanowires[J]. Appl. Phys. A, 2011, 103(4):951-954. [14] Wang L S, Tsan D, Stoeber B, et al. Substrate-free fabrication of self-supporting zno nanowire arrays[J]. Adv. Mater., 2012, 24(29):3999-4004. [15] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Adv. Mater., 2003, 15(5):464-466. [16] Han L, Xu Z K, Wang P, et al. Facile synthesis of a free-standing Ag@AgCl film for a high performance photocatalyst and photodetector[J]. Chem. Commun., 2013, 49(43):4953-4955. [17] Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties[J]. Nano Res., 2011, 4(11):1013-1098. [18] Fan F R, Ding Y, Liu D Y, et al. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(34):12036-12037. [19] Lupan O, Chow L, Ono L K, et al. Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route[J]. J. Phys. Chem. C, 2010, 114(29):12401-12408. [20] Fang X, Li J H, Zhao D X, et al. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method[J]. J. Phys. Chem. C, 2009, 113(50):21208-21212. [21] Fang F, Zhao D X, Fang X. et al. Optical and electrical properties of individual p-type ZnO microbelts with Ag dopant[J]. J. Mater. Chem., 2011, 21(14):14979-14983. [22] Thomas M A, Cui J B. Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO[J]. J. Appl. Phys., 2009, 105(9):093533-1-5. [23] Chen X Y, Li J H, Sun Z H, et al. The formation and acceptor related emission behavior of ZnO/ZnAl2O4 core-shell structures[J].J. Alloys Compd., 2013, 571(26):116-117.
Research Progress on Synthesis, Regulation and Applications of Long-wavelength Emission Carbon Dots
A Novel Two-dimensional SiO2 Structure and Influence of In-plane Strain on Its Photoelectric Properties: First-principles Study
First-principle Study of Electronic and Optical Properties of Inorganic Perovskite Cs2SnI6 for Solar Cells
First-principles Investigation on Electronic Structure and Optical Properties of CdSexS1-x
Solvent-dependent Optical Properties of MoS2 Quantum Dots
Related Author
CHEN Jinliang
QU Dan
ZHAO Wenxin
AN Li
SUN Zaicheng
LIU Xueting
LIU Yucheng
ZHAO Ziang
Related Institution
Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental Science and Engineering, College of Chemistry and Life Sciences, Beijing University of Technology
Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University
College of Physics, Jilin Normal University
Department of Basic Teaching Research, Qinghai University
New Energy Industry Research Center, Qinghai University